scholarly journals Membranes adsorber from oil palm empty fruit branches (OPEFB): preparation and fabrication

2022 ◽  
Vol 1212 (1) ◽  
pp. 012027
Author(s):  
N Hidayah ◽  
P D Darsono ◽  
M Elma’ ◽  
Mahmud ◽  
I Syauqiah ◽  
...  

Abstract Oil Palm empty fruit branches (OPEFB) are solid waste that are numerous produced from palm oil mills. OPEFB is economically and potentially used as membrane adsorber material due to has good thermal stability, chemical resistance and biodegradability. The objectives of this work is to preparate and fabricate the OPEFB membrane adsorber which is activated by physical activation. The OPEFB has been cleaned and dried, subsequently heated at 500 °C for 30 min via pyrolysis. The activated OPEFB was sieved using 200-400 mesh and followed by the addition of 2-propanol, NH4Cl, polyvinyl alcohol (PVA) and polyethylene glycol (PEG) to become a mixture. The activated OPEFB ratio were varied in the mixtures to obtain the best composition in order to produce a good membrane adsorber texture for casting. FTIR shows on wavenumber at 1082 cm−1 indicates that there is O-H stretching functional groups and bands at 943 cm−1 correspons to C=O functional group. It is concluded that the membrane mixtures can be employed as membrane adsorber due to carbon content which creates strong matrix applied for gas separation.

2016 ◽  
Vol 36 (4) ◽  
pp. 329-362 ◽  
Author(s):  
Nurul F. Himma ◽  
Sofiatun Anisah ◽  
Nicholaus Prasetya ◽  
I Gede Wenten

Abstract Polypropylene (PP) is one of the most used polymers for microporous membrane fabrication due to its good thermal stability, chemical resistance, mechanical strength, and low cost. There have been numerous studies reporting the developments and applications of PP membranes. However, PP membrane with high performance is still a challenge. Thus, this article presents a comprehensive overview of the advances in the preparation, modification and application of PP membrane. The preparation methods of PP membrane are firstly reviewed, followed by the modification approaches of PP membrane. The modifications includes hydrophilic and superhydrophobic modification so that the PP membranes become more suitable to be applied either in aqueous applications or in non-aqueous ones. The fouling resistant of hydrophilized PP membrane and the wetting resistant of superhydrophobized PP membrane are then reviewed. Finally, special attention is given to the various potential applications and industrial outlook of the PP membranes.


Gels ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 170
Author(s):  
Xiuya Wang ◽  
Pengbo Xie ◽  
Ke Wan ◽  
Yuanyuan Miao ◽  
Zhenbo Liu ◽  
...  

Porous aerogel materials have advantages of a low density, low thermal conductivity and high porosity, and they have broad application prospects in heat insulation and building energy conservation. However, aerogel materials usually exhibit poor mechanical properties. Single-component aerogels are less likely to possess a good thermal stability and mechanical properties. It is necessary to prepare multiple-composite aerogels by reinforcement to meet practical application needs. In this experiment, a simple preparation method for polyvinyl alcohol (PVA)–graphene (GA)–nanocellulose (CNF) ternary composite aerogels was proposed. This is also the first time to prepare ternary composite aerogels by mixing graphene, nanocellulose and polyvinyl alcohol. A GA–CNF hydrogel was prepared by a one-step hydrothermal method, and soaked in PVA solution for 48 h to obtain a PVA–GA–CNF hydrogel. PVA–GA–CNF aerogels were prepared by freeze drying. The ternary composite aerogel has advantages of excellent mechanical properties, a low thermal conductivity and an improved thermal stability, because strong hydrogen bonds form between the PVA, GA and CNF. The composite aerogels were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffractometry, Brunauer–Emmett–Teller analysis, dynamic thermal analysis, thermogravimetry and thermal constant analysis to characterize the properties of the ternary composite aerogels. The lightweight, low-density and porous PVA–GA–CNF composite aerogels withstood 628 times their mass. The thermal conductivity of the composite aerogels was 0.044 ± 0.005 W/mK at room temperature and 0.045 ± 0.005 W/mK at 70 °C. This solid, low thermal conductivity and good thermal stability PVA–GA–CNF ternary composite aerogel has potential application in thermal insulation.


2002 ◽  
Vol 10 (6) ◽  
pp. 441-446
Author(s):  
Milan R. Patel ◽  
Manish P. Patel ◽  
Rashmika H. Patel ◽  
Ranjan G. Patel

A novel coloured epoxy resin has been synthesized by reaction between epichlorohydrin and bisazodiol. The curing of the resin, blended with a DGEBA resin, were characterized by differential scanning calorimetry (DSC). The thermal stability of the cured products has been investigated by thermogravimetric analysis (TGA). The cured products showed good thermal stability. Glass fibre composites were fabricated by blending a DGEBA resin and the novel coloured epoxy resin and their mechanical properties, electrical properties and chemical resistance were studied.


2018 ◽  
Vol 7 (1) ◽  
pp. 16-20
Author(s):  
Vidyanova Anggun Mentari ◽  
Gewa Handika ◽  
Seri Maulina

Indonesia is one of the biggest producent of palm oil in the world. According to Badan Pusat Statistik (Central Bureau of Statistics), on 2016 wide of the palm oil estate in Indonesia is 11.672.861 Ha. The waste of palm oil plantations so many and isn’t used optimal, for the example is oil palm frond. Oil palm frond is one of the wet of waste with the number of production as much as 19.143.492 ton on 2016. This research will discuss the comparison of functional group and surface morphology activated carbon of oil palm frond with use H3PO­4 and HNO3 as an activator. This research purpose to know the comparison of functional group and surface morphology activated carbon of oil palm frond with use H3PO4 and HNO3 as an activator. The method includes impregnation, carbonization, and washing process. The concentration of activator is 20% with 400 oC activation temperature. This research is used morphology surface activated carbon analysis with SEM and FTIR spectrophotometer. The result of analysis with SEM show there is pore formed on activated carbon and the indentification with spechtrophotometer FTIR shows that activated carbon is contain of functional group are C=O, C=C, C-C, N=O, C-N, C-OH, CH2and C-H.


TAPPI Journal ◽  
2011 ◽  
Vol 10 (4) ◽  
pp. 29-33
Author(s):  
LEE A. GOETZ ◽  
AJI P. MATHEW ◽  
KRISTIINA OKSMAN ◽  
ARTHUR J. RAGAUSKAS

The thermal stability and decomposition of in-situ crosslinked nanocellulose whiskers – poly(methyl vinyl ether-co-maleic acid) – polyethylene glycol formulations (PMVEMA-PEG), (25%, 50%, and 75% whiskers) – were investigated using thermal gravimetric analysis (TGA) methods. The thermal degradation behavior of the films varied according to the percent cellulose whiskers in each formulation. The presence of cellulose whiskers increased the thermal stability of the PMVEMA-PEG matrix.


Author(s):  
Dimas Satria ◽  
Poningsih Poningsih ◽  
Widodo Saputra

The purpose of this paper is to create an expert system to detect oil palm plant diseases in order to help farmers / companies in providing accurate information about the diseases of oil palm plants and how to overcome them and to help reduce the risk of decreasing palm oil production. This system is designed to mimic the expertise of an expert who is able to detect diseases that attack oil palm plants. The method used is forward chaining that is starting from a set of data and proving a fact by describing the level of confidence and uncertainty found in a hypothesis. The results of this study are to diagnose diseases of oil palm plants and their computerization using web programming languages.


Sign in / Sign up

Export Citation Format

Share Document