scholarly journals Development and testing of a light dimming control using arduino uno

2022 ◽  
Vol 1212 (1) ◽  
pp. 012043
Author(s):  
Waluyo ◽  
F Hadiatna ◽  
A Widura ◽  
P Setiana

Abstract Increasing population and human needs have an impact on increasing the need for electrical energy. One of them is for lighting needs. Therefore, it is necessary to save the lighting system so that energy consumption is minimum and the need for lighting is optimal, by controlling light dimming. This paper presents an implementation and testing of a dimming light control using an Arduino Uno microcontroller. The circuit used a 12-volt power supply, as a voltage source, to increase to 42 volts, to meet a lamp voltage, through a dc-dc converter. After obtaining the maximum voltage, a MOSFET cut off the voltage according to the desired light or performance level. The duty cycle was directly proportional to the output voltage, using a PWM coding to get the necessary light intensity. Some testing was conducted, including the measurement point shifting to the side. The testing results show that PMW and LDR decreased as the duty cycle increased. Nevertheless, both decreasing are different, the PWM decreased linearly with a gradient of -2.55 and the LDR decreased hyperbolically. While, the illuminance, current, and power rose as the duty cycle increased. The illuminance increased, tent to be saturated, as the power increased. However, the illuminance was reduced as the PWM and LDR increased. The illuminance decreased slightly as the measurement points shifted to the side.

2015 ◽  
Vol 771 ◽  
pp. 145-148 ◽  
Author(s):  
Muhammad Miftahul Munir ◽  
Dian Ahmad Hapidin ◽  
Khairurrijal

Research on nanofiber materials is actively done around the world today. Various types of nanofibers have been synthesized using an electrospinning technique. The most important component when synthesizing nanofibers using the electrospinning technique is a DC high voltage power supply. Some requirements must be fulfilled by the high voltage power supply, i.e., it must be adjustable and its output voltage reaches tens of kilovolts. This paper discusses the design and development of a high voltage power supply using a diode-split transformer (DST)-type high voltage flyback transformer (HVFBT). The DST HVFBT was chosen because of its simplicity, compactness, inexpensiveness, and easiness of finding it. A pulse-width modulation (PWM) circuit with controlling frequency and duty cycle was fed to the DST HVFBT. The high voltage power supply was characterized by the frequency and duty cycle dependences of its output voltage. Experimental results showed that the frequency and duty cycle affect the output voltage. The output voltage could be set from 1 to 18 kV by changing the duty cycle. Therefore, the nanofibers could be synthesized by employing the developed high voltage power supply.


2012 ◽  
Vol 253-255 ◽  
pp. 679-683
Author(s):  
Jiang Hong Xie ◽  
Jin Ping Wang ◽  
Ming Xia Shang Guan ◽  
Yang Shao

The thesis states the building lighting regulated system composition, basic functions and work processes. Based on the compensation principle, making use of transformer controlled voltage source and the controlled current source model, the thesis analyzes the principle of the system voltage. According to the illumination and life span character of the lighting lamps and lanterns in different voltage, the thesis gets the optimal power supply of building lighting system electric lamps and lanterns. Finally, the building indoor lighting using optimal power supply voltage lighting and energy saving rate of building exterior wall using time-varying stabilized voltage control scheme are analyzed and calculated.


2020 ◽  
Vol 8 (1) ◽  
pp. 25-34
Author(s):  
Khoirul Effendi ◽  
◽  
Junaidi Junaidi ◽  
Sri Wahyu Suciyati ◽  
◽  
...  

Research about power supplies has been developed for various requirement. The power supply is used to supply electronic devices and laboratory-scale equipment, one of which is electrospinner. Electrospinner is an instrument used to make nanofibers consisting of several components, namely: power supply, high voltage, syringe pump, and collector drum. Electrospinner requires a stable supply of voltage so that the system can work well and requires a lot of voltage supply to supply components from the electrospinner. Arduino-based switching mode power supply (SMPS) is designed in this research. Arduino-based SMPS makes it possible to produce a stable supply with many outputs. Arduino as a PWM generator is used to control the power supply output voltage based on duty cycle. The results of the study addressed the duty cycle affecting the output of the power supply. The output voltage generated by the power supply can be set from 0-100 V with an accuracy of 98.19%, an error of 1.81% and a precision of 0.02% which is stated by the variation of the coefficient. The power supply produced also has an extra output voltage of 15 VCT and 15 V.


2015 ◽  
Vol 793 ◽  
pp. 280-285
Author(s):  
J.A. Soo ◽  
N.A. Rahman ◽  
J.H. Leong

This paper proposed a novel single-stage square wave buck-boost inverter (SWBBI). The proposed inverter is designed by using dual buck-boost converters. The input DC voltage of the proposed inverter can be either stepped-down or stepped-up in square output voltage waveform depending on the duty-cycle applied for each buck-boost converter. This characteristic is not found in conventional voltage source inverter where the output voltage is always lower than the input DC voltage. The proposed inverter is analyzed by a series of simulations using MATLAB/Simulink as well as experiments by using different values of duty-cycle. A conclusion about the feasibility of the proposed inverter is given by comparing the simulation and experimental results.


Author(s):  
Agus Prasetyo ◽  
Fajar Bima D.R ◽  
Hendi Matalata

The adapter / power supply is a DC voltage source that is used to provide voltage or power to various electronic circuits that require DC voltage to operate. The main circuit of the power supply is  a rectifier, which is a circuit that converts an alternating signal (AC) into a direct signal (DC). The conversion process starts from rectification by the diode. In this paper, the Ripple Voltage Filter is carried out using a passive filter and the average voltage drop of the filter is 64%, the regulation (regulation) by the regulator circuit, the provision of this DC electrical energy source is to provide a unidirectional variable voltage ( DC) which aims to provide practical tools in Batanghari University electric laboratories while the benefits obtained from the research results are as a tool for practical activities in the electrical engineering laboratory of Batanghari University, Jambi.


Author(s):  
A. Kalirasu

<p>This paper presents a novel single DC input source and multiple DC output suitable for switched mode power supply (SMPS) applications integrating interleaved boost and sepic converter with fly back topology. The proposed converter can be remodeled for any required output voltage power supply without changing hardware structure because wide range of output voltage can be obtained using sepic and boost converters by changing duty cycle command by implementing a simple voltage input pi controller. Conventional fly back topology is added to interleaved circuit to produce desired dc output voltage this voltage can be controlled by choosing turns ratio of fly back transformer. The proposed multi output DC converter is simulated in MATLAB/Simulink environment and results are presented for verifying merits of the converter.</p>


Electrician ◽  
2018 ◽  
Vol 12 (3) ◽  
pp. 111
Author(s):  
Noer Soedjarwanto ◽  
Endah Komalasari ◽  
Venus Asadila

Abstrak— Rangkaian multilevel boost converter memiliki prinsip kerja yang sama dengan boost converter konvensional namun rasio tegangan keluarannya lebih tinggi. Dimana tegangan keluaran dari multilevel boost converter ini akan digunakan sebagai catu daya untuk mengendalikan kecepatan putar motor arus searah (MAS). Kemudian akan dilakukan perbandingan antara tegangan keluaran multilevel boost converter dengan boost converter konvensional yang digunakan sebagai catu daya MAS. Pada penelitian ini nilai tegangan keluaran multilevel boost converter saat dihubungkan pada MAS dengan duty cycle 20% yaitu 80,3 volt dan MAS sudah mulai berputar dengan kecepatan 350 rpm. Sementara tegangan keluaran boost converter konvensional sebesar 39,4 volt namun MAS belum dapat berputar pada duty cycle 20% dan tegangan masukan yang sama yaitu 12,3 volt. Kemudian dilakukan penambahan beban MAS pada pengujian multilevel boost converter. Dimana semakin berat beban pada MAS maka torsinya akan meningkat. Dengan demikian perangkat multilevel boost converter dapat digunakan sebagai catu daya MAS untuk kendaraan listrik. Kata kunci: Multilevel boost converter, boost converter, motor arus searah Abstract—Multilevel boost converter circuit has the same working principle with conventional boost converter. Hence, the ratio of its output voltage is higher that will be used as power supply for controlling the rotational speed of MAS. Then, there will be comparison among the output voltage of multilevel boost converter and conventional boost converter which will be used as power supply of MAS. On this research, the output voltage value of multilevel boost converter which is connected with MAS at the duty cycle 20 % is 80,3 volt. Furthermore, it had rotated at the speed of 320 rpm. Meanwhile, the output voltage of boost converter conventional is 39,4 volt. On the contrary, MAS can not rotated at the duty cycle of 20 % with the same input voltage that will be 12,3 volt. Then, it will be added with load of MAS for multilevel boost converter testing. While the load of MAS is heavier, its torque will be increased too. Therefore, multilevel boost converter device can be used as power supply of MAS for electric vehicles. Keywords: Multilevel boost converter, boost converter, direct current motor


Foristek ◽  
2019 ◽  
Vol 9 (2) ◽  
Author(s):  
Agus Mahendra ◽  
Sapril Sapril ◽  
Maryantho Masarrang

Flyback Converter is an electronic circuit that can increase the output voltage value, the voltage value can be adjusted by changing the value of the duty cycle. This Flyback Converter will be controlled by the Pulse Width Modulation method as the output voltage setting and this research is equipped with a feedback function as monitoring and control of Input Pulse Width Modulation. This designed flyback converter aims to provide an isolated power supply as a power source for Brushless Direct Current Motor drivers, and this research was conducted to analyze how much power the flyback converter can produce to be able to supply Brushless Direct Current Motor drivers. The results of the analysis obtained in the research Design of flyback converter for power supply of BLDC (Brushless Direct Current) motor driver that is flyback converter is given an input voltage of 31 VDC and output voltage of 15 VDC, rheostat load with a capacity of 39 Ohm, a frequency of 31 KHz in the form of a box wave duty cycle reaches 70%. Flyback converter designed to produce maximum power of 49.6 watts on 70% duty cycle testing.


2018 ◽  
Vol 18 (1) ◽  
pp. 42
Author(s):  
Hendi Matalata ◽  
Leily W Johar

Buck-Boost Converters are electric power supply device for raising and lowering the voltage DC (Direct Current) power supply equipment according to needs of the electrical load, this research is designed to Buck-Boost Converter and Converter on the 12 Volt power supply, the design of a Buck Converter power supply derived 5 Volt, 6Volt and 6 Volt design while the Boost Converter power supply 12 Volt offered up to 16 Volt, 19 Volt and 22 Volts in a way set the duty cycle of PWM frequency settings in 1.7 Khz and 3.3 Khz. Results research indicates the State of the differences in each frequency in the set output voltage ripple shape obtained is different, however, in the design of this research have been successfully carried out as expected.Keywords: buck converter, boost converter, change in duty cycle


In this research proposes FLC and Artificial Neural Network (ANN) based on Dyanamic Voltage Controller (DVR) along with d q o transformation for power qulity improvement in a distribution system. Design a 9levels CHMLI based on Custom Power device with SVPWM techniques. Distribution needs to protect against the harmonics such as sag, swell and flickers are affect on standard pure power supply at the end of the load. These power quality issues are minimised with voltage injection using DVR.The designed inveter to reduced the voltage switching losses and stresses of semiconductor devices. Here used single DC voltage source with a series connection of 4 capacitors for self balancing purpose, 3 diodes,output voltage levels and Cascaded H-bridge cell. the proposed 9 level CHMLI inverter citcuit to helps reducing the number of independent voltage dc sources and IGBTS. The harmonics are less in the output voltage proposed work (new topologies)compared to conventional topology. A comparision of FLC and ANN with THD and Power Factor results and study. It has been carried out to analyse through MATLAB / SIMULINK Software.


Sign in / Sign up

Export Citation Format

Share Document