scholarly journals Rancang Bangun Multilevel Boost Converter Untuk Catu Daya Motor Arus Searah Pada Kendaraan Listrik Berbasis Mikrokontroler

Electrician ◽  
2018 ◽  
Vol 12 (3) ◽  
pp. 111
Author(s):  
Noer Soedjarwanto ◽  
Endah Komalasari ◽  
Venus Asadila

Abstrak— Rangkaian multilevel boost converter memiliki prinsip kerja yang sama dengan boost converter konvensional namun rasio tegangan keluarannya lebih tinggi. Dimana tegangan keluaran dari multilevel boost converter ini akan digunakan sebagai catu daya untuk mengendalikan kecepatan putar motor arus searah (MAS). Kemudian akan dilakukan perbandingan antara tegangan keluaran multilevel boost converter dengan boost converter konvensional yang digunakan sebagai catu daya MAS. Pada penelitian ini nilai tegangan keluaran multilevel boost converter saat dihubungkan pada MAS dengan duty cycle 20% yaitu 80,3 volt dan MAS sudah mulai berputar dengan kecepatan 350 rpm. Sementara tegangan keluaran boost converter konvensional sebesar 39,4 volt namun MAS belum dapat berputar pada duty cycle 20% dan tegangan masukan yang sama yaitu 12,3 volt. Kemudian dilakukan penambahan beban MAS pada pengujian multilevel boost converter. Dimana semakin berat beban pada MAS maka torsinya akan meningkat. Dengan demikian perangkat multilevel boost converter dapat digunakan sebagai catu daya MAS untuk kendaraan listrik. Kata kunci: Multilevel boost converter, boost converter, motor arus searah Abstract—Multilevel boost converter circuit has the same working principle with conventional boost converter. Hence, the ratio of its output voltage is higher that will be used as power supply for controlling the rotational speed of MAS. Then, there will be comparison among the output voltage of multilevel boost converter and conventional boost converter which will be used as power supply of MAS. On this research, the output voltage value of multilevel boost converter which is connected with MAS at the duty cycle 20 % is 80,3 volt. Furthermore, it had rotated at the speed of 320 rpm. Meanwhile, the output voltage of boost converter conventional is 39,4 volt. On the contrary, MAS can not rotated at the duty cycle of 20 % with the same input voltage that will be 12,3 volt. Then, it will be added with load of MAS for multilevel boost converter testing. While the load of MAS is heavier, its torque will be increased too. Therefore, multilevel boost converter device can be used as power supply of MAS for electric vehicles. Keywords: Multilevel boost converter, boost converter, direct current motor

2020 ◽  
Vol 11 (4) ◽  
pp. 64 ◽  
Author(s):  
Zhengxin Liu ◽  
Jiuyu Du ◽  
Boyang Yu

Direct current to direct current (DC/DC) converters are required to have higher voltage gains in some applications for electric vehicles, high-voltage level charging systems and fuel cell electric vehicles. Therefore, it is greatly important to carry out research on high voltage gain DC/DC converters. To improve the efficiency of high voltage gain DC/DC converters and solve the problems of output voltage ripple and robustness, this paper proposes a double-boost DC/DC converter. Based on the small-signal model of the proposed converter, a double closed-loop controller with voltage–current feedback and input voltage feedforward is designed. The experimental results show that the maximum efficiency of the proposed converter exceeds 95%, and the output voltage ripple factor is 0.01. Compared with the traditional boost converter and multi-phase interleaved DC/DC converter, the proposed topology has certain advantages in terms of voltage gain, device stress, number of devices, and application of control algorithms.


2020 ◽  
Vol 1 (2) ◽  
pp. 144-149
Author(s):  
Muldi Yuhendri ◽  
Randy Setiawan

Direct current (dc) voltage sources are one of the voltage sources most widely used for various purposes. Dc voltage can be obtained from a dc generator or by converting an ac voltage into a dc voltage using a power converter. There are several dc voltage levels that are commonly used by electrical and electronic equipment. To get a dc voltage that can be used for various equipment, then a dc voltage source must be varied according to the required. One way to get a variable dc voltage is to use a dc-dc converter. This research proposes a dc-dc boost converter that can increase the dc voltage with varying outputs. The boost converter is proposed using Arduino Uno as a controller with an input voltage of 12 volts. The converter output voltage regulation is implemented through Arduino programming using Matlab simulink. The experimental results show that the boost converter designed in this study has worked well as intended. This can be seen from the boost converter output voltage which is in accordance with the reference voltage entered in the Matlab simulink program


Foristek ◽  
2019 ◽  
Vol 9 (2) ◽  
Author(s):  
Agus Mahendra ◽  
Sapril Sapril ◽  
Maryantho Masarrang

Flyback Converter is an electronic circuit that can increase the output voltage value, the voltage value can be adjusted by changing the value of the duty cycle. This Flyback Converter will be controlled by the Pulse Width Modulation method as the output voltage setting and this research is equipped with a feedback function as monitoring and control of Input Pulse Width Modulation. This designed flyback converter aims to provide an isolated power supply as a power source for Brushless Direct Current Motor drivers, and this research was conducted to analyze how much power the flyback converter can produce to be able to supply Brushless Direct Current Motor drivers. The results of the analysis obtained in the research Design of flyback converter for power supply of BLDC (Brushless Direct Current) motor driver that is flyback converter is given an input voltage of 31 VDC and output voltage of 15 VDC, rheostat load with a capacity of 39 Ohm, a frequency of 31 KHz in the form of a box wave duty cycle reaches 70%. Flyback converter designed to produce maximum power of 49.6 watts on 70% duty cycle testing.


2018 ◽  
Vol 18 (1) ◽  
pp. 42
Author(s):  
Hendi Matalata ◽  
Leily W Johar

Buck-Boost Converters are electric power supply device for raising and lowering the voltage DC (Direct Current) power supply equipment according to needs of the electrical load, this research is designed to Buck-Boost Converter and Converter on the 12 Volt power supply, the design of a Buck Converter power supply derived 5 Volt, 6Volt and 6 Volt design while the Boost Converter power supply 12 Volt offered up to 16 Volt, 19 Volt and 22 Volts in a way set the duty cycle of PWM frequency settings in 1.7 Khz and 3.3 Khz. Results research indicates the State of the differences in each frequency in the set output voltage ripple shape obtained is different, however, in the design of this research have been successfully carried out as expected.Keywords: buck converter, boost converter, change in duty cycle


Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 264
Author(s):  
Dogga Raveendhra ◽  
Poojitha Rajana ◽  
Kalamchety Srinivasa Ravi Kumar ◽  
Praveen Jugge ◽  
Ramesh Devarapalli ◽  
...  

A step-up for a non-isolated interleaved differential capacitor clamped boost (IDCCB) DC–DC converter is proposed in this manuscript. Because of its ability to produce high voltage gains, it is used in high-power applications. This converter’s modelling and control design are applicable to any number of phases. A six-phase interleaved differential capacitor clamped boost prototype is tested in this work, with an input voltage of 60 V, an output voltage of 360 V, and a nominal output power of 2.2 kW. The components of the converter are placed and controlled in such a way that the output voltage is the sum of the two capacitor voltages and the input voltage, which is two times higher than the supply voltage when compared to a conventional interleaved differential dual-boost converter. This converter reduces the stress on the capacitor with reference to the conventional interleaved differential boost converter for the same conversion gain. This prototype is considered and the developed approach is applied, after which the experimental results are obtained. This converter has potential for application in areas such as renewable energy conversion and electric vehicles.


Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1623
Author(s):  
Bor-Ren Lin

In order to realize emission-free solutions and clean transportation alternatives, this paper presents a new DC converter with pulse frequency control for a battery charger in electric vehicles (EVs) or light electric vehicles (LEVs). The circuit configuration includes a resonant tank on the high-voltage side and two variable winding sets on the output side to achieve wide output voltage operation for a universal LEV battery charger. The input terminal of the presented converter is a from DC microgrid with voltage levels of 380, 760, or 1500 V for house, industry plant, or DC transportation vehicle demands, respectively. To reduce voltage stresses on active devices, a cascade circuit structure with less voltage rating on power semiconductors is used on the primary side. Two resonant capacitors were selected on the resonant tank, not only to achieve the two input voltage balance problem but also to realize the resonant operation to control load voltage. By using the variable switching frequency approach to regulate load voltage, active switches are turned on with soft switching operation to improve converter efficiency. In order to achieve wide output voltage capability for universal battery charger demands such as scooters, electric motorbikes, Li-ion e-trikes, golf carts, luxury golf cars, and quad applications, two variable winding sets were selected to have a wide voltage output (50~160 V). Finally, experiments with a 1 kW rated prototype were demonstrated to validate the performance and benefits of presented converter.


Author(s):  
Mamidala Hemanth Reddy

The output voltage from the sustainable energy like photovoltaic (PV) arrays and fuel cells will be at less amount of level. This must be boost considerably for practical utilization or grid connection. A conventional boost converter will provides low voltage gain while Quadratic boost converter (QBC) provides high voltage gain. QBC is able to regulate the output voltage and the choice of second inductor can give its current as positive and whereas for boost increases in the voltage will not able to regulate the output voltage. It has low semiconductor device voltage stress and switch usage factor is high. Analysis and design modeling of Quadratic boost converter is proposed in this paper. A power with 50 W is developed with 18 V input voltage and yield 70 V output voltage and the outcomes are approved through recreation utilizing MATLAB/SIMULINK MODEL.


Author(s):  
Suwarno Suwarno ◽  
Tole Sutikno

<p>This paper presents the implementation of the buck-boost converter design which is a power electronics applications that can stabilize voltage, even though the input voltage changes. Regulator to stabilize the voltage using PWM pulse that triger pin 2 on XL6009. In this design of buck-boost converter is implemented using the XL6009, LM7815 and TIP2955. LM7815 as output voltage regulator at 15V with 1A output current, while TIP2955 is able to overcome output current up to 5A. When the LM7815 and TIP2955 are connected in parallel, the converter can increase the output current to 6A.. Testing is done using varied voltage sources that can be set. The results obtained from this design can be applied to PV (Photovoltaic) and WP (Wind Power), with changes in input voltage between 3-21V dc can produce output voltage 15V.</p>


Author(s):  
Waleed Ishaq Hameed ◽  
Baha Aldeen Sawadi ◽  
Ali Muayed

<span lang="EN-US">This paper deals with voltage tracking control of DC- DC boost converter based on Fuzzy neural network. Maintaining the output voltage of the boost converter in some applications are very important, especially for sudden change in the load or disturbance in the input voltage. Traditional control methods usually have some disadvantages in eliminating these disturbances, as the speed of response to these changes is slow and thus affect the regularity of the output voltage of the converter. The strategy is to sense the output voltage across the load and compare it with the reference voltage to ensure that it follows the required reference voltages. In this research, fuzzy neural was introduced to achieve the purpose of voltage tracking by training the parameter of controller based on previous data. These data sets are the sensing input voltage of the converter and the value of the output load changes. To establish the performance of proposed method, MATLAB/SIMULINK environments are presented, simulation results shows that proposed method works more precisely, faster in response and elimination the disturbances</span>


DC-DC converters are playing an important role in designing of Electric Vehicles, integration of solar cells and other DC applications. Contemporary high power applications use multilevel converters that have multi stage outputs for integrating low voltage sources. Conventional DC-DC converters use single source and have complex structure while using for Hybrid Energy Systems. This paper proposes a multi-input, multi-output DC-DC converter to produce constant output voltage at different input voltage conditions. This topology is best suitable for hybrid power systems where the output voltage is variable due to environmental conditions. It reduces the requirement of magnetic components in the circuit and also reduces the switching losses. The proposed topology has two parts namely multi-input boost converter and level-balancing circuit. Boost converter increases the input voltage and Level Balancing Circuit produce Multi output. Equal values of capacitors are used in Level Balancing Circuit to ensure the constant output voltage at all output stages. The operating modes of each part are given and the design parameters of each part are calculated. Performance of the proposed topology is verified using MATLAB/Simulink simulation which shows the correctness of the analytical approach. Hardware is also presented to evaluate the simulation results.


Sign in / Sign up

Export Citation Format

Share Document