scholarly journals The Effect of Tube Length and Cold Exit Diameter on The Cold Flow Temperature of Vortex Tube Using High Temperature Working Gas

Author(s):  
Muhammad Fadhli Suhaimi ◽  
Mohd Hazwan Yusof
2018 ◽  
Vol 225 ◽  
pp. 02010
Author(s):  
Muhammad Fadhli Suhaimi ◽  
Mohd Hazwan Yusof ◽  
Mohamad Nor Hafiz Rashid ◽  
Mohamad Firdaus Basrawi

A vortex tube is a simple device which works as a refrigerator, also known as Ranque Vortex Tube, Hilsch Vortex Tube, and Ranque–Hilsch vortex tube. It is used to obtain desired hot and cold gas and is widely used for spot cooling in industry. In vortex tube, the effect of geometrical parameters on the cold flow temperature of vortex tube is still unclear, and effect of certain working gas is unidentified. Hence, the objective of this analysis is to determine the effect of length of the vortex tube, cold exit diameter and different working gas. 3 different tube lengths, 3 different cold exit diameters, and 8 different types of gas are used. Simflow, which is free software, is selected to analyse the effect numerically. From the results, it is clear that the optimum tube length, cold exit diameter, and working gas are L = 175 mm, d = 4 mm and helium, respectively.


2013 ◽  
Vol 17 (4) ◽  
pp. 1079-1092 ◽  
Author(s):  
Mahyar Kargaran ◽  
A. Arabkoohsar ◽  
S.J. Hagighat-Hosini ◽  
V. Farzaneh-Kord ◽  
Mahmood Farzaneh-Gord

Vortex tube is a simple device without a moving part which is capable of separating hot and cold gas streams from a higher pressure inlet gas stream. The mechanism of energy separation has been investigated by several scientists and second law approach has emerged as an important tool for optimizing the vortex tube performance. Here, a thermodynamic model has been used to investigate vortex tube energy separation. Further, a method has been proposed for optimizing the vortex tube based on the rate of entropy generation obtained from experiments. Also, an experimental study has been carried out to investigate the effects of the hot tube length and cold orifice diameter on entropy generation within a vortex tube with natural gas as working fluid. A comparison has been made between air and natural gas as working fluids. The results show that the longest tube generates lowest entropy for NG. For air, it is middle tube which generates lowest entropy. Integration of entropy generation for all available cold mass fractions unveiled that an optimized value for hot tube length and cold orifice diameter is exist.


2019 ◽  
Vol 18 (2) ◽  
pp. 13
Author(s):  
F. P. Branco ◽  
E. D. Buchelt ◽  
F. M. Barbosa ◽  
B. P. Rosa ◽  
D. J. Laporte

Vortex tube is a thermodynamic device, with no moving parts, applied to separate hot and cold air from compressed air injected into the tube. It has many applications in the industry, for example, among others, it can be mentioned electronic systems cooling, machining processes cooling and environmental chambers. This paper presents the design and tube dimensioning based on parameters and data found in the literature. Therefore, a prototype has been made and tested, which allowed the understanding of the influence of internal tube diameter and width on the hot and cold air temperatures while submitted to compressed air with pressure varying from 1 to 2.5bar. Results of tested configurations indicates that the relation between tube length and diameter (L/D) has small influence on vertex tube behavior, meanwhile, 3/8” tube diameter shows lowest temperatures on cold flow (-6.5°C, -8.0°C and -8.5°C) and higher COP (≈ 0.15).


2017 ◽  
Vol 54 (5) ◽  
pp. 731-743 ◽  
Author(s):  
C. S. RANASINGHE ◽  
M. D. P. KUMARATHUNGE ◽  
K. G. S. KIRIWANDENIYA

SUMMARYSuccessful fruit set in coconut depends on several reproductive processes including pollen germination and pollen tube growth. High temperature (˃33 °C) during flowering reduces fruit set in coconut. Therefore, identification and development of coconut varieties or hybrids with high reproductive heat tolerance will benefit the coconut industry in view of the climate changes. This experiment was conducted to quantify the response of pollen germination and pollen tube growth of seven coconut hybrids to increasing temperature from 16 to 38 °C. A Principal Component Analysis (PCA) was carried out to classify coconut hybrids on the basis of their temperature tolerances to pollen germination. Pollen germination and pollen tube length of the hybrids ranged from 56 to 78% and 242 to 772 µm, respectively. A modified bilinear model best described the response to temperature of pollen germination and pollen tube length. Cardinal temperatures (Tmin, Topt and Tmax) of pollen germination and pollen tube length varied among the seven hybrids. PCA identified Tmax for pollen germination and Topt for pollen tube length as the most important parameters in describing varietal tolerance to high temperature. PCA also identified SLGD × Sri Lanka Tall and Sri Lanka Brown Dwarf × Sri Lanka Tall as the most tolerant hybrids to high temperature stress and Sri Lanka Tall × Sri Lanka Tall and Sri Lanka Green Dwarf × San Ramon as less tolerant ones based on cardinal temperatures for pollen germination and pollen tube length. Tmax for pollen germination of the most tolerant and less tolerant hybrids were 41.9 and 39.5 °C, respectively. Topt for pollen tube length in the most tolerant and less tolerant hybrids were 29.5 and 26.0 °C, respectively.


2013 ◽  
Vol 7 (1) ◽  
pp. 98-107 ◽  
Author(s):  
E. Torrella ◽  
J. Patiño ◽  
D. Sánchez ◽  
R. Llopis ◽  
R. Cabello

The paper presents the analysis of the energy performance of an air vortex cooling tube under variations of the air inlet properties, with three independent experimental tests validated through the energy balance in the device. The experimental analysis includes the following variations of the input conditions: First, the effect of the air inlet pressure to the vortex tube, focused on the analysis of temperature variations in the output cold stream and in the cooling capacity when the cold flow fraction varies. Second, we studied air inlet temperature variations to the vortex tube under different cold flow fractions, which is an analysis not found in the literature. And finally, is studied the performance of the vortex tube when the insulation is provided or in absence of insulation.


Sign in / Sign up

Export Citation Format

Share Document