scholarly journals Analytical methods of electron beam power evaluation for electron-beam welding with deep penetration

Author(s):  
V K Dragunov ◽  
E V Terentyev ◽  
A P Sliva ◽  
A L Goncharov ◽  
D A Zhgut
2021 ◽  
Vol 315 ◽  
pp. 101-105
Author(s):  
Leonid M. Lobanov ◽  
E.A. Asnis ◽  
Ye.G. Ternovy ◽  
Yu.V. Zubchenko ◽  
I.I. Statkevich ◽  
...  

A new generation of electron beam tool for welding during assembly and repair-restoration works on board of manned space vehicles in open space was demonstrated. The tool includes a small-sized electron beam gun (EBG) with an electron beam power of up to 2.5 kW and a high-voltage power source with a voltage of 10 kV. The design of the electron-optical system of EBG allows using it in both manual as well as in automatic mode applying robotic devices. Applying the manufactured EBG and manipulator, in vacuum chamber the works on simulating the repair of a spacecraft’s section of aluminum 2219 alloy were carried out. The obtained results of studying the structure and mechanical characteristics and also sealing of welds confirmed the high quality of welded joints and a reliability of the technology for repairing a damaged fragment of a spacecraft's body using electron beam welding.


2021 ◽  
Vol 1160 ◽  
pp. 93-102
Author(s):  
Ajay Sharma ◽  
Sandeep Singh Sandhu ◽  
Vineet Kumar

Electron beam welding produces very narrow and deep penetration therefore it finds application where welding of thick materials is required. AISI 321 is susceptible to intergranular corrosion when it is used in high temperature and harsh conditions, owing to the Titanium depletion in the weld zone. However, the heat affected zone formed in electron beam welding extends to a narrow region across the weld pool. In the present study electron beam welding of austenitic 321 stainless steel is done to examine the mechanical and metallurgical properties of the joints. Microhardness tests along and across the weld bead were carried out. Tensile and impact tests were performed to analyze mechanical properties. The microstructures of the weld zone, fusion zone and base metals were also captured. Skeletal ferrites were seen in the weld metal. The aging treatment of 700°C for 24 hours which resulted in a change in morphology of the grains from skeletal to vermicular and promoted the formation of Ti-rich carbides on the grain boundaries. The maximum impact toughness at sub-zero temperature i.e. -40°C was recorded as 129.3 J in as-welded samples and it got reduced to 119.5 J after aging treatment. The average ultimate tensile strength was 582 N/mm2 and it got decreased to 481 N/mm2 after aging treatment.


1977 ◽  
Vol 99 (2) ◽  
pp. 323-326 ◽  
Author(s):  
M. S. Phadke ◽  
A. M. Joglekar ◽  
S. M. Wu

The spiking phenomenon in electron beam welding is characterized using the second-order continuous autoregressive model. The model parameters are then physically interpreted in terms of the random fluctuation in the beam power and the diffusion of heat energy in the plates being welded; and a mechanistic model is proposed for the spiking phenomenon. Finally, regression models are obtained to relate the spiking behavior to the accelerating voltage, the beam current, and the welding speed.


2011 ◽  
Vol 189-193 ◽  
pp. 3317-3325
Author(s):  
Yi Luo ◽  
Jin He Liu ◽  
Hong Ye

The thermal behavior during electron beam welding on magnesium alloy were analyzed and simulated. According to the thermal effect of the electron-beam-generated keyhole, a mathematic model of rotary Gaussian body heat source with incremental power-density-distribution was developed. This model can be useful for simulating the thermal effect of metal vapor plasma on the surface of the workpiece and the deep-penetrating effect of the electron beam. By the action of thermal model, the characteristics of temperature field during vacuum electron beam welding on AZ61 magnesium alloy were studied by the method of finite element analysis. And then, the influence of welding parameters on the temperature distributions and the weld contours were analyzed. The simulations and experiments showed that the different deep-penetration effects and temperature distributions were achieved with the varying welding energy inputs, and the metal vapor plasma has a significant impact on the weld contour of magnesium alloy.


2013 ◽  
Vol 681 ◽  
pp. 314-318
Author(s):  
Yi Luo

A heat transfer model for vaporizing in vacuum electron beam welding on magnesium alloy is developed based on the laws of heat conduction and energy conservation. The vaporizing time of the main metal elements in AZ series magnesium alloy is calculated using the model. The results show that the vaporization of Mg element will precede the Zn element under the affecting of high energy density electron beam. The vaporizing times of alloying elements are not entirely dependent on the level of the boiling point, to a certain extent, also dependent on the thermal diffusivity and are closely related to the latent heat of vaporizing and melting of the materials. The change of beam spot diameter of electron beam also greatly alters the heat transfer characteristics of electron beam heat source beam. As the strong vaporizing effect of Mg element will occur within several milliseconds, the keyhole induced by the metal elements vaporizing is formed only within several milliseconds, but also the deep penetration welding effect of vacuum electron beam welding of magnesium alloys will be obtained in a very short period of time.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Mohamed Sobih ◽  
Zuhair Elseddig ◽  
Khalid Almazy ◽  
Mohamed Sallam

Aiming to reduce the weight of components, thus allowing a profit in terms of energy saving, automotive industry as well as aircraft industry extensively uses aluminum alloys. The most widely used joining technology in aircraft industry is riveting, while welding seems to be used in the car industry in the case of aluminum alloys. However, welding technology is characterized by many defects, such as gas porosity; oxide inclusions; solidification cracking (hot tearing); and reduced strength in both the weld and the heat affected zones which could limit its development. Many techniques are used for aluminum alloys welding, among them is electron beam welding (EBW), which has unique advantages over other traditional fusion welding methods due to high-energy density, deep penetration, large depth-to-width ratio, and small heat affected zone. The welding parameters that yield to optimal weld joint have been previously obtained. These optimal parameters were validated by welding a specimen using these parameters. To evaluate this optimal weld joint, complete, microstructural observations and characterization have been carried out using scanning electron microscopy, optical microscopy, and energy dispersive X-ray analysis. This evaluation leads to description and quantification of the solidification process within this weld joint.


2020 ◽  
Vol 2020 (1) ◽  
pp. 49-53
Author(s):  
V.V. Skryabinskyi ◽  
◽  
V.M. Nesterenkov ◽  
M.O. Rusynyk ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document