Construction of a liver sinusoid based on the laminar flow on chip and self-assembly of endothelial cells

2018 ◽  
Vol 10 (2) ◽  
pp. 025010 ◽  
Author(s):  
Shengli Mi ◽  
Xiaoman Yi ◽  
Zhichang Du ◽  
Yuanyuan Xu ◽  
Wei Sun
Author(s):  
Sarah Basehore ◽  
Samantha Bohlman ◽  
Callie Weber ◽  
Swathi Swaminathan ◽  
Yuji Zhang ◽  
...  

Rationale: In diabetic animals as well as high glucose cell culture conditions, endothelial nitric oxide synthase (eNOS) is heavily O-GlcNAcylated, which inhibits its phosphorylation and nitric oxide (NO) production. It is unknown, however, whether varied blood flow conditions, which affect eNOS phosphorylation, modulate eNOS activity via O-GlcNAcylation-dependent mechanisms. Objective: The goal of this study was to test if steady laminar flow, but not oscillating disturbed flow, decreases eNOS O-GlcNAcylation, thereby elevating eNOS phosphorylation and NO production. Methods and Results: Human umbilical vein endothelial cells (HUVEC) were exposed to either laminar flow (20 dynes/cm2 shear stress) or oscillating disturbed flow (4{plus minus}6 dynes/cm2 shear stress) for 24 hours in a cone-and-plate device. eNOS O-GlcNAcylation was almost completely abolished in cells exposed to steady laminar but not oscillating disturbed flow. Interestingly, there was no change in protein level or activity of key O-GlcNAcylation enzymes (OGT, OGA, or GFAT). Instead, metabolomics data suggest that steady laminar flow decreases glycolysis and hexosamine biosynthetic pathway (HBP) activity, thereby reducing UDP-GlcNAc pool size and consequent O-GlcNAcylation. Inhibition of glycolysis via 2-deoxy-2-glucose (2-DG) in cells exposed to disturbed flow efficiently decreased eNOS O-GlcNAcylation, thereby increasing eNOS phosphorylation and NO production. Finally, we detected significantly higher O-GlcNAcylated proteins in endothelium of the inner aortic arch in mice, suggesting that disturbed flow increases protein O-GlcNAcylation in vivo. Conclusions: Our data demonstrate that steady laminar but not oscillating disturbed flow decreases eNOS O-GlcNAcylation by limiting glycolysis and UDP-GlcNAc substrate availability, thus enhancing eNOS phosphorylation and NO production. This research shows for the first time that O-GlcNAcylation is regulated by mechanical stimuli, relates flow-induced glycolytic reductions to macrovascular disease, and highlights targeting HBP metabolic enzymes in endothelial cells as a novel therapeutic strategy to restore eNOS activity and prevent EC dysfunction in cardiovascular disease.


2014 ◽  
Vol 34 (suppl_1) ◽  
Author(s):  
Sindy Giebe ◽  
Coy Brunssen ◽  
Melanie Brux ◽  
Natalia Cockcroft ◽  
Katherine Hewitt ◽  
...  

Endothelial dysfunction is one of the first steps in the development of atherosclerosis. This proinflammatory phenotype is associated with decreased bioavailability of nitric oxide and a corresponding expression profile in the endothelial cells. Tobacco smoking promotes development of atherosclerotic plaques and local hemodynamic forces are key stimuli in this process. Low laminar flow is involved in the development of an unstable plaque phenotype, while high laminar flow has atheroprotective role. The molecular mechanisms controlling plaque stability in response to tobacco smoking remain largely unknown so far. Therefore, we exposed human endothelial cells to cigarette smoke extract (CSEaq) under disturbed flow conditions. Primary human endothelial cells were stimulated with increasing dosages of CSEaq for 24h. Cell viability was reduced by CSEaq in a dose-dependent manner. The impact of specific flow conditions and different doses of CSEaq on the expression of atherosclerosis-related genes was investigated using a cone-and-plate viscometer. High laminar flow induced elongation of endothelial cells in the direction of flow, increased eNOS expression and NO release in a time-dependent manner. This increase was inhibited by CSEaq. Low laminar flow showed no effect on eNOS expression and NO release. The NRF2 antioxidative defense system was also induced by high laminar flow. NRF2 and NRF2 target genes HMOX1 and NQO1 were strongly activated by CSEaq. Furthermore, we monitored the expression of proinflammatory genes. CSEaq strongly induced adhesion molecule ICAM-1. Interestingly, VCAM-1 was unaffected by CSEaq. Induction of endothelial NADPH oxidase isoform 4 by CSEaq was prevented by high laminar flow. Catalase expression was not affected by flow and CSEaq, whereas CSEaq transiently increased SOD1 expression. Endothelial wound healing was improved by atheroprotective high laminar flow. Low flow did not affect wound healing. Furthermore, high laminar flow decreased adhesion of monocytes to endothelial cells, compared to low flow. We suggest novel molecular mechanisms how tobacco smoking promotes the development of endothelial dysfunction. This can contribute to the formation of an unstable atherosclerotic plaque phenotype.


2019 ◽  
Vol 40 (30) ◽  
pp. 2523-2533 ◽  
Author(s):  
Matthias S Leisegang ◽  
Sofia-Iris Bibli ◽  
Stefan Günther ◽  
Beatrice Pflüger-Müller ◽  
James A Oo ◽  
...  

Abstract Aims To assess the functional relevance and therapeutic potential of the pro-angiogenic long non-coding RNA MANTIS in vascular disease development. Methods and results RNA sequencing, CRISPR activation, overexpression, and RNAi demonstrated that MANTIS, especially its Alu-element, limits endothelial ICAM-1 expression in different types of endothelial cells. Loss of MANTIS increased endothelial monocyte adhesion in an ICAM-1-dependent manner. MANTIS reduced the binding of the SWI/SNF chromatin remodelling factor BRG1 at the ICAM-1 promoter. The expression of MANTIS was induced by laminar flow and HMG-CoA-reductase inhibitors (statins) through mechanisms involving epigenetic rearrangements and the transcription factors KLF2 and KLF4. Mutation of the KLF binding motifs in the MANTIS promoter blocked the flow-induced MANTIS expression. Importantly, the expression of MANTIS in human carotid artery endarterectomy material was lower compared with healthy vessels and this effect was prevented by statin therapy. Interestingly, the protective effects of statins were mediated in part through MANTIS, which was required to facilitate the atorvastatin-induced changes in endothelial gene expression. Moreover, the beneficial endothelial effects of statins in culture models (spheroid outgrowth, proliferation, telomerase activity, and vascular organ culture) were lost upon knockdown of MANTIS. Conclusion MANTIS is tightly regulated by the transcription factors KLF2 and KLF4 and limits the ICAM-1 mediated monocyte adhesion to endothelial cells and thus potentially atherosclerosis development in humans. The beneficial effects of statin treatment and laminar flow are dependent on MANTIS.


Blood ◽  
1995 ◽  
Vol 85 (7) ◽  
pp. 1696-1703 ◽  
Author(s):  
M Morigi ◽  
C Zoja ◽  
M Figliuzzi ◽  
M Foppolo ◽  
G Micheletti ◽  
...  

We investigated the effect of hemodynamic shear forces on the expression of adhesive molecules, E-selectin, and intercellular adhesion molecule-1 (ICAM-1) on human umbilical vein endothelial cells (HUVEC) exposed to laminar (8 dynes/cm2) or turbulent shear stress (8.6 dynes/cm2 average), or to a static condition. Laminar flow induced a significant time-dependent increase in the surface expression of ICAM-1, as documented by flow cytometry studies. Endothelial cell surface expression of ICAM-1 in supernatants of HUVEC exposed to laminar flow was not modified, excluding the possibility that HUVEC exposed to laminar flow synthetize factors that upregulate ICAM-1. The effect of laminar flow was specific for ICAM-1, while E-selectin expression was not modulated by the flow condition. Turbulent flow did not affect surface expression of either E-selectin or ICAM-1. To evaluate the functional significance of the laminar-flow-induced increase in ICAM-1 expression, we studied the dynamic interaction of total leukocyte suspension with HUVEC exposed to laminar flow (8 dynes/cm2 for 6 hours) in a parallel-plate flow chamber or to static condition. Leukocyte adhesion to HUVEC pre-exposed to flow was significantly enhanced, compared with HUVEC maintained in static condition (233 +/- 67 v 43 +/- 16 leukocytes/mm2, respectively), and comparable with that of interleukin-1 beta treated HUVEC. Mouse monoclonal antibody anti-ICAM-1 completely blocked flow-induced upregulation of leukocyte adhesion. Interleukin-1 beta, which upregulated E-selectin expression, caused leukocyte rolling on HUVEC that was significantly lower on flow- conditioned HUVEC and almost absent on untreated static endothelial cells. Thus, laminar flow directly and selectively upregulates ICAM-1 expression on the surface of endothelial cells and promotes leukocyte adhesion. These data are relevant to the current understanding of basic mechanisms that govern local inflammatory reactions and tissue injury.


2015 ◽  
Vol 40 (17) ◽  
pp. 4106 ◽  
Author(s):  
Dongwan Kim ◽  
Paula Popescu ◽  
Mark Harfouche ◽  
Jacob Sendowski ◽  
Maria-Eleni Dimotsantou ◽  
...  

2006 ◽  
Vol 174 (7) ◽  
pp. 1059-1069 ◽  
Author(s):  
Lingfang Zeng ◽  
Qingzhong Xiao ◽  
Andriana Margariti ◽  
Zhongyi Zhang ◽  
Anna Zampetaki ◽  
...  

Reendothelialization involves endothelial progenitor cell (EPC) homing, proliferation, and differentiation, which may be influenced by fluid shear stress and local flow pattern. This study aims to elucidate the role of laminar flow on embryonic stem (ES) cell differentiation and the underlying mechanism. We demonstrated that laminar flow enhanced ES cell–derived progenitor cell proliferation and differentiation into endothelial cells (ECs). Laminar flow stabilized and activated histone deacetylase 3 (HDAC3) through the Flk-1–PI3K–Akt pathway, which in turn deacetylated p53, leading to p21 activation. A similar signal pathway was detected in vascular endothelial growth factor–induced EC differentiation. HDAC3 and p21 were detected in blood vessels during embryogenesis. Local transfer of ES cell–derived EPC incorporated into injured femoral artery and reduced neointima formation in a mouse model. These data suggest that shear stress is a key regulator for stem cell differentiation into EC, especially in EPC differentiation, which can be used for vascular repair, and that the Flk-1–PI3K–Akt–HDAC3–p53–p21 pathway is crucial in such a process.


2008 ◽  
Vol 36 (2) ◽  
pp. 189-193 ◽  
Author(s):  
Jean-Christophe Taveau ◽  
Mathilde Dubois ◽  
Olivier Le Bihan ◽  
Sylvain Trépout ◽  
Sébastien Almagro ◽  
...  

In vascular endothelium, adherens junctions between endothelial cells are composed of VE-cadherin (vascular endothelial cadherin), an adhesive receptor that is crucial for the proper assembly of vascular structures and the maintenance of vascular integrity. As a classical cadherin, VE-cadherin links endothelial cells together by homophilic interactions mediated by its extracellular part and associates intracellularly with the actin cytoskeleton via catenins. Although, from structural crystallographic data, a dimeric structure arranged in a trans orientation has emerged as a potential mechanism of cell–cell adhesion, the cadherin organization within adherens junctions remains controversial. Concerning VE-cadherin, its extracellular part possesses the capacity to self-associate in solution as hexamers consisting of three antiparallel cadherin dimers. VE-cadherin-based adherens junctions were reconstituted in vitro by assembly of a VE-cadherin EC (extracellular repeat) 1–EC4 hexamer at the surfaces of liposomes. The artificial adherens junctions revealed by cryoelectron microscopy appear as a two-dimensional self-assembly of hexameric structures. This cadherin organization is reminiscent of that found in native desmosomal junctions. Further structural studies performed on native VE-cadherin junctions would provide a better understanding of the cadherin organization within adherens junctions. Homophilic interactions between cadherins are strengthened intracellularly by connection to the actin cytoskeleton. Recently, we have discovered that annexin 2, an actin-binding protein connects the VE-cadherin–catenin complex to the actin cytoskeleton. This novel link is labile and promotes the endothelial cell switch from a quiescent to an angiogenic state.


2021 ◽  
Vol 328 ◽  
pp. 129068
Author(s):  
Ondrej Krivosudský ◽  
Daniel Havelka ◽  
Djamel Eddine Chafai ◽  
Michal Cifra
Keyword(s):  
The Self ◽  

Sign in / Sign up

Export Citation Format

Share Document