Autonomous spheroid formation by culture plate compartmentation

2021 ◽  
Author(s):  
Marian Fürsatz ◽  
Peter Gerges ◽  
Susanne Wolbank ◽  
Sylvia Nürnberger
2001 ◽  
Vol 47 (3) ◽  
pp. 165-171 ◽  
Author(s):  
Nobuhiko YAMAUCHI ◽  
Osamu YAMADA ◽  
Toru TAKAHASHI ◽  
Kazuyoshi HASHIZUME

2019 ◽  
Vol 10 ◽  
pp. 204173141988918 ◽  
Author(s):  
Wei Liao ◽  
Jieqing Wang ◽  
Jiecheng Xu ◽  
Fuyu You ◽  
Mingxin Pan ◽  
...  

Spheroid culture is a widely used three-dimensional culture technology that simulates the three-dimensional structure of tumors in vivo and has been considered a good model for tumor research. However, current commercialized spheroid culture tools have the shortcomings of high cost or relatively poor spheroid-forming results for some special cells. To solve such problems, we designed a 3D printed, reusable, stamp-like resin mold that could shape microstructures for spheroid culture of tumor cells on the surface of agarose substrate in a 96-well plate. We applied this homemade three-dimensional culture tool in spheroid formation for hepatocellular carcinoma cells. The experimental data show that the effect of spheroid culture on four hepatocellular carcinoma cell lines in our homemade spheroid culture plate is better than that of the commercialized ultralow attachment spheroid culture plate, and compared to two-dimensional culture, three-dimensional culture improves cell functions. In addition, the drug-sensitive test based on patient-derived hepatocellular carcinoma cells showed a different pattern between spheroid and two-dimensional cultures. In conclusion, our spheroid culture tool is characterized by its low cost, reusability, low cell consumption, convenience in medium exchange, and good effect of spheroid formation, suggesting that this technique could be widely used in individual treatment and high-throughput drug screening.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Meilin Chan ◽  
Licun Wu ◽  
Zhihong Yun ◽  
Trevor D. McKee ◽  
Michael Cabanero ◽  
...  

AbstractMalignant pleural mesothelioma (MPM) is an aggressive neoplasm originating from the pleura. Non-epithelioid (biphasic and sarcomatoid) MPM are particularly resistant to therapy. We investigated the role of the GITR-GITRL pathway in mediating the resistance to therapy. We found that GITR and GITRL expressions were higher in the sarcomatoid cell line (CRL5946) than in non-sarcomatoid cell lines (CRL5915 and CRL5820), and that cisplatin and Cs-137 irradiation increased GITR and GITRL expressions on tumor cells. Transcriptome analysis demonstrated that the GITR-GITRL pathway was promoting tumor growth and inhibiting cell apoptosis. Furthermore, GITR+ and GITRL+ cells demonstrated increased spheroid formation in vitro and in vivo. Using patient derived xenografts (PDXs), we demonstrated that anti-GITR neutralizing antibodies attenuated tumor growth in sarcomatoid PDX mice. Tumor immunostaining demonstrated higher levels of GITR and GITRL expressions in non-epithelioid compared to epithelioid tumors. Among 73 patients uniformly treated with accelerated radiation therapy followed by surgery, the intensity of GITR expression after radiation negatively correlated with survival in non-epithelioid MPM patients. In conclusion, the GITR-GITRL pathway is an important mechanism of autocrine proliferation in sarcomatoid mesothelioma, associated with tumor stemness and resistance to therapy. Blocking the GITR-GITRL pathway could be a new therapeutic target for non-epithelioid mesothelioma.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 957
Author(s):  
JunHwee Jang ◽  
Eun-Jung Lee

Cell spheroids have been studied as a biomimic medicine for tissue healing using cell sources. Rapid cell spheroid production increases cell survival and activity as well as the efficiency of mass production by reducing processing time. In this study, two-dimensional MXene (Ti3C2) particles were used to form mesenchymal stem cell spheroids, and the optimal MXene concentration, spheroid-production times, and bioactivity levels of spheroid cells during this process were assessed. A MXene concentration range of 1 to 10 μg/mL induced spheroid formation within 6 h. The MXene-induced spheroids exhibited osteogenic-differentiation behavior, with the highest activity levels at a concentration of 5 μg/mL. We report a novel and effective method for the rapid formation of stem cell spheroids using MXene.


Author(s):  
Dinesh Dhamecha ◽  
Duong Le ◽  
Tomali Chakravarty ◽  
Kalindu Perera ◽  
Arnob Dutta ◽  
...  

2021 ◽  
Vol 22 (13) ◽  
pp. 6726
Author(s):  
Agata M. Gaweł ◽  
Maciej Ratajczak ◽  
Ewa Gajda ◽  
Małgorzata Grzanka ◽  
Agnieszka Paziewska ◽  
...  

Background: Thyroid carcinoma (TC) is the most common endocrine system malignancy, and papillary thyroid carcinoma (PTC) accounts for >80% of all TC cases. Nevertheless, PTC pathogenesis is still not fully understood. The aim of the study was to elucidate the role of the FRMD5 protein in the regulation of biological pathways associated with the development of PTC. We imply that the presence of certain genetic aberrations (e.g., BRAF V600E mutation) is associated with the activity of FRMD5. Methods: The studies were conducted on TPC1 and BCPAP (BRAF V600E) model PTC-derived cells. Transfection with siRNA was used to deplete the expression of FRMD5. The mRNA expression and protein yield were evaluated using RT-qPCR and Western blot techniques. Proliferation, migration, invasiveness, adhesion, spheroid formation, and survival tests were performed. RNA sequencing and phospho-kinase proteome profiling were used to assess signaling pathways associated with the FRMD5 expressional status. Results: The obtained data indicate that the expression of FRMD5 is significantly enhanced in BRAF V600E tumor specimens and cells. It was observed that a drop in intracellular yield of FRMD5 results in significant alternations in the migration, invasiveness, adhesion, and spheroid formation potential of PTC-derived cells. Importantly, significant divergences in the effect of FRMD5 depletion in both BRAF-wt and BRAF-mutated PTC cells were observed. It was also found that knockdown of FRMD5 significantly alters the expression of multidrug resistant genes. Conclusions: This is the first report highlighting the importance of the FRMD5 protein in the biology of PTCs. The results suggest that the FRMD5 protein can play an important role in controlling the metastatic potential and multidrug resistance of thyroid tumor cells.


2021 ◽  
Vol 11 (8) ◽  
pp. 3309
Author(s):  
Kosuke Sako ◽  
Daisuke Sakai ◽  
Yoshihiko Nakamura ◽  
Erika Matsushita ◽  
Jordy Schol ◽  
...  

After the discovery of functionally superior Tie2-positive nucleus pulposus (NP) progenitor cells, new methods were needed to enable mass culture and cryopreservation to maintain these cells in an undifferentiated state with high cell yield. We used six types of EZSPHERE® dishes, which support spheroid-forming colony culture, and examined NP cell spheroid-formation ability, number, proliferation, and mRNA expression of ACAN, COL1A2, COL2A1, and ANGPT1. Six different types of cryopreservation solutions were examined for potential use in clinical cryopreservation by comparing the effects of exposure time during cryopreservation on cell viability, Tie2-positivity, and cell proliferation rates. The spheroid formation rate was 45.1% and the cell proliferation rate was 7.75 times using EZSPHERE® dishes. The mRNA levels for COL2A1 and ANGPT1 were also high. In cryopreservation, CryoStor10 (CS10) produced ≥90% cell viability and a high proliferation rate after thawing. CS10 had a high Tie2-positive rate of 12.6% after culturing for 5 days after thawing. These results suggest that EZSPHERE enabled colony formation in cell culture without the use of hydrogel products and that CS10 is the best cryopreservation medium for retaining the NP progenitor cell phenotype and viability. Together, these data provide useful information of NP cell-based therapeutics to the clinic.


Sign in / Sign up

Export Citation Format

Share Document