High tunability and sensitivity of 1D topological photonic crystal heterostructure

2021 ◽  
Author(s):  
Sayed Elshahat ◽  
Zain Elabdeen A. Mohamed ◽  
Mohamed Almokhtar ◽  
Cuicui Lu

Abstract A modality to high tunability and sensing performance of one-dimensional (1D) topological photonic crystal (PC) heterostructure is realized based on a new mechanism through 1D topological PC. With inserting a defect aqueous layer as a sandwich between two 1D PCs, the transmittance gradually decreases with the increasing thickness of the defect layer. When the two layers of the topological heterostructure interface are replaced by the defect layer, the tunability, all sensing capabilities have been improved and the principle of topology is preserved. A topologically protected edge state is formed at the heterostructure interface with a highly localized electric field. For glucose sensing, high sensitivity S = 603.753 nm/RIU is obtained at the low detection limit of about DL = 1.22×10^(-4) RIU with high-quality factor Q = 2.33×10^4 and a high figure of merit FOM = 8147.814 RIU^(-1). Besides, the transmittance can be maintained more than 99% at low and/or high glucose concentrations, due to the coupling topological edge mode between defect mode and topological edge state. An excellent platform is examined for the design of a topological photonic sensor which is a flexible platform that can be used for any type of sensor solely by replacing the interface layers with the sensor materials. Thus, our results will promote the development of 1D topological photonic devices.

Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1940
Author(s):  
Sayed Elshahat ◽  
Israa Abood ◽  
Mohamed Saleh M. Esmail ◽  
Zhengbiao Ouyang ◽  
Cuicui Lu

A paradigm for high-quality factor (Q) with a substantial fulfillment for appraising sensing ability and performance has been investigated. Through constructing a 1D (one-dimensional) topological photonic crystal (PhC) mirror heterostructure, which is formed by the image view of 1D topological PhC stacking with its original one. In the 1D topological PhC-mirror heterostructure, there is an interesting mode that appeared with the symmetric, typical Lorentzian-line shape with 100% transmittance in the topological mirror edge-state mode (hybrid resonance mode) at the heterostructure interface. Physically, such a mode is a defect mode, but the defect is introduced through topological operations. The high Q-factor of 5.08 × 104 is obtained due to the strong optical localization of the defect mode at the topological edge area. Consequently, this device acts as a narrow passband filter. Moreover, due to the narrow bandpass property, it may be an advantageous reference for many applications in filtering, switching, and sensing. Thus, introducing an electro-optical (EO) polymer layer at the interface to modify the edge defect can tune the defect mode both in frequency and Q-factor for higher spatial pulse compression and higher EO sensitivity. Accordingly, the Q-factor of 105, the sensitivity of 616 nm/RIU, and the figure of merit of 49,677.42 RIU−1 are obtained. The sensing ability and performance are attributable to the strong optical localization in the interface region and enhanced light-matter interaction. We predict that the 1D topological PhC mirror heterostructure will be an outstanding point in the field of optical sensing, filters, and optical switching in different fields.


Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1533
Author(s):  
Arafa Aly ◽  
S. Awasthi ◽  
A. Mohamed ◽  
Z. Matar ◽  
M. Mohaseb ◽  
...  

In this manuscript, we have explored the photonic biosensing application of the 1D photonic crystal (PhC) (AB)NCDC(AB)N, which is capable of detecting reproductive progesterone and estradiol hormones of different concentration levels in blood samples of females. The proposed structure is composed of an air cavity surrounded by two buffer layers of material MgF2, which is sandwiched between two identical 1D sub PhCs (AB)N. Both sub PhCs are made up of alternate layers of materials, SiO2 and Si, of period 5. MATLAB software has been used to obtain transmission characteristics of the structure corresponding TE wave, only with the help of the transfer matrix method. The mainstay of this research is focused on the dependence of the intensity and position of the defect mode inside the photonic bandgap with respect to reproductive hormone concentrations in blood samples, change in the thickness of the cavity region and change in angle of incidence corresponding to TE wave only. The proposed design shows high sensitivity of 98.92 nm/nmol/L and 96.58 nm/nmol/L when the cavity of a thickness of 340 nm is loaded with progesterone and estradiol hormones of concentrations of 80 nmol/L and 11 nmol/L, respectively, at an incident angle of 20°. Apart from sensitivity, other parameters such as quality factor and figure of merit have also been computed to gain deep insight about the sensing capabilities of the proposed design. These findings may pave the path for the design and development of various sensing devices capable of detecting gynecological problems pertaining to reproductive hormones in females. Thus, the simple design and excellent performance makes our design most efficient and suitable for sensing applications in industrial and biomedical fields.


2016 ◽  
Vol 30 (30) ◽  
pp. 1650355 ◽  
Author(s):  
Kai Tong ◽  
Jun Wang ◽  
Chunliang Zhou ◽  
Meiting Wang

The defect layer is introduced to the insulator-metal-insulator (IMI) Bragg waveguide structure. The micro-cavity structure of long-range surface plasma is proposed based on the defect mode. The liquid crystal is the defect layer in the structure of Bragg. The energy band characteristics of the long-range surface plasmon Bragg micro-cavity structure are analyzed by using the finite difference time domain method. The influence of the period number and the length of the micro-cavity on the quality factor Q and the volume V of the Bragg grating are discussed. The results show that the photonic energy can be confined very well in the micro-cavity by the structure of the micro-cavity. By controlling the birefringence of liquid crystal, the resonance wavelength of the micro-cavity appears with redshift phenomenon. The tuning range is 42 nm. The tuning of the working window of the long-range surface plasmon filter is realized. The photonic energy is the strongest in the insulating layer and the metal interface. The increase of cycles number has certain limitation on the improvement of the quality factor Q of the cavity. The influence of the defect-cavity length on the resonant wavelength, the quality factor Q and the mode volume V is obvious. The performance of the micro-cavity can be improved by adjusting the number of the micro-cavity and the length of the defect-cavity, and the ratio of Q/V can reach 43,750 in the communication band. The nano micro-cavity provides a new design idea and basis for the fabrication of tunable long-range surface plasmon wave filter in this paper.


2021 ◽  
Author(s):  
Arafa H Aly ◽  
Doaa Mohamed ◽  
Suneet K Awasthi ◽  
Zaineb S Matar ◽  
Mohammed Tamam

Abstract The present work deals with photonic sensing technology used for biosensing applications. In this paper we have theoretically examined the transmission properties of one-dimensional (1D) defect photonic crystal (DPC) suitable for biosensing applications. The number of contaminated water samples containing different types of bacteria is poured into the defect layer region and corresponding change in the transmission peaks of defect mode inside photonic bandgap (PBG) has been observed. The proposed structure is composed of two sub-photonic crystals (PCs) containing Si and TiO2 material layers. These two sub-PCs are separated by defect layer of air in which various sensing samples has to be poured one by one. The performance of the proposed biosensor is verified by measuring redshift in the central wavelength of defect mode inside PBG depending upon the change in refractive index of various water borne bacteria samples from 1.333 to 1.43. The sensitivity of the proposed biosensor reaches to high value of 483.6 nm/RIU for Escherichia coli (E. coli) bacteria sample. The proposed biosensor achieves high value of figure of (FOM) of order 104 and low value of limit of detection (LOD) of order 10− 6 which makes our biosensor suitable for biosensing applications.


2021 ◽  
Author(s):  
Zaky Zaky ◽  
B. Moustafa ◽  
Arafa H. Aly

Abstract The performance of one-dimensional photonic crystal for plasma cell application is studied theoretically. The geometry of the structure can detect the change in the refractive index of the plasma cells in a sample that infiltrated through the defect layer. We have obtained a variation on the resonant peak positions using the analyte defect layer with different refractive indices. The defect peak of the optimized structure is red-shifted from 2195 nm to 2322nm when the refractive index of the defect layer changes from 1.3246 to 1.3634. This indicates a high sensitivity of the device (S=3300 nm/RIU) as well as a high Q-factor (Q=103). The proposed sensor has a great potential for biosensing applications and the detection of convalescent plasma.


2018 ◽  
Vol 427 ◽  
pp. 409-417 ◽  
Author(s):  
Chao Wu ◽  
Xing Liu ◽  
Shuai Feng ◽  
Xiao Chen ◽  
Chuanbo Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document