Transformation of Fe-rich intermetallic phases and eutectic Si morphology in Al–Si–Cu–Fe cast alloy with solution treatment

2019 ◽  
Vol 6 (6) ◽  
pp. 066515
Author(s):  
Bo Jiang ◽  
Ze-Sheng Ji ◽  
Hong-Yu Xu ◽  
Mao-Liang Hu ◽  
Yong-Bing Zhang ◽  
...  
2017 ◽  
Vol 891 ◽  
pp. 354-359
Author(s):  
Lenka Kuchariková ◽  
Eva Tillová ◽  
Mária Chalupová ◽  
Juraj Belan ◽  
Ivana Švecová ◽  
...  

The contribution describes changes in morphology of structural parameters in recycled (secondary) AlSi9Cu3 cast alloy microstructure. These changes depended on different temperatures of artificial aging. The T6 heat treatment, which was used for affecting the structural parameters morphology, consisted of solution treatment at temperature 515 °C with holding time 4 hours, water quenching at 40°C and artificial aging at different temperatures 130 °C, 150 °C, 170 °C, 190 °C and 210 °C with different holding time 2, 4, 8, 16 and 32 hours. The morphology of structural parameters was observed using combination of different analytical techniques (light microscopy upon black-white and colour etching, scanning electron microscopy - SEM upon deep etching). The different temperatures of artificial aging led to changes in microstructure include the spheroidization and coarsening of eutectic silicon, gradual disintegration, shortening and thinning of Fe-rich intermetallic phases, the dissolution of precipitates and the precipitation of finer hardening phase (Al2Cu).


2012 ◽  
Vol 59 (4) ◽  
pp. 385-396 ◽  
Author(s):  
Lenka Hurtalová ◽  
Eva Tillová ◽  
Mária Chalupová

PurposeThe influence of age-hardening solution treatment at temperature 515_C with holding time 4 hours, water quenching at 40_C and artificial aging by different temperature 130_C, 150_C, 170_C and 210_C with different holding time 2, 4, 8, 16 and 32 hours on changes in morphology of Fe-rich Al15(FeMn)3Si2 and Cu-rich (Al2Cu, Al-Al2Cu-Si) intermetallic phases in recycled AlSi9Cu3 cast alloy. Material/Methods: Recycled (secondary) AlSi9Cu3 cast alloy is used especially in automotive industry (dynamic exposed cast, engine parts, cylinder heads, pistons and so on). Microstructure was observed using a combination of different analytical techniques (scanning electron microscopy upon standard and deep etching and energy dispersive X-ray analysis - EDX) which have been used for the identification of the various phases. Quantitative study of changes in morphology of phases was carried out using Image Analyzer software NIS-Elements. The mechanical properties (Brinell hardness and tensile strength) were measured in line with STN EN ISO. Results/Conclusion: Age-hardening led to changes in microstructure include the spheroidization of eutectic silicon, gradual disintegration, shortening and thinning of Fe-rich intermetallic phases and Al-Al2Cu-Si phases were fragmented, dissolved and redistributed within _-matrix. These changes led to increase in the hardness and tensile strength in the alloy.


2014 ◽  
Vol 782 ◽  
pp. 365-368
Author(s):  
Mária Chalupová ◽  
Eva Tillová ◽  
Mária Farkašová

The present study was performed on primary AlSi10MgMn cast alloy to analyze the morphology and composition of complex microstructure of the intermetallic phases. AlSi10MgMn cast alloy is a typical casting alloy used for parts with thin walls and complex geometry. It offers good strength, hardness and dynamic properties and is therefore also used for parts subject to high loading. In this study, several methods were used such as: optical light microscopy (LM) and scanning (SEM) electron microscopy in combination with EDX analysis using standard etched or deep etched sample to identify intermetallic. Alloy was analyzed in as-cast state (rapidly cooled right after casting) and after T6 heat treatment. T6 treatment (solution annealing, quenching and age hardening) improves mechanical properties. The results show that the microstructure of AlSi10MgMn alloy consisted of several phases: α-matrix, eutectic, Fe-rich intermetallic phases (Al15(FeMn)3Si2, Al5FeSi), Mg2Si, Al8FeMg3Si6 and of other phases in formation. Iron-rich intermetallic phases are well known to be strongly influential on mechanical properties in Al-Si alloys. The most common morphology was the long platelets of Al5FeSi phase. After heat treatment were observed spheroidisation of eutectic Si, dissolution and fragmentation of Fe-phases.


2006 ◽  
Vol 116-117 ◽  
pp. 522-525
Author(s):  
E. Evangelista ◽  
Marcello Cabibbo ◽  
S. Spigarelli ◽  
C. Scalabroni ◽  
Luigi Balloni ◽  
...  

The tensile properties and the microstructure of an Al-7%Si-0.6%Mg-0.5%Cu rheo-cast component were investigated. The material underwent a T5 treatment, consisting in ageing at 160, 175 and 190°C for durations ranging from 0.5 to 48h. Tensile testing indicated that the T5 treatment resulted in a relatively good level of strength and in a comparatively low ductility. In order to improve ductility, maintaining as low as possible the cost of the final component, a single solution treatment at 500°C for 4h was subsequently applied. The tensile strength and ductility of the solution treated and aged material were higher than in the T5 condition. These differences were attributed to the microstructural evolution occurring during exposure at 500°C, in particular to the spheroidization of eutectic-Si and to a more homogeneous distribution of the precipitates.


2014 ◽  
Vol 1025-1026 ◽  
pp. 349-354 ◽  
Author(s):  
Lenka Hurtalová ◽  
Eva Tillová ◽  
Mária Chalupová

Secondary cast Al-Si alloys containing more of additions elements and forming various structural parameters (intermetallic phases). The optimization of structure parameters morphology is necessary because the mechanical properties depend on changes in morphology of eutectic Si and intermetallic phases in Al-Si cast alloy. This article describes changes of eutectic Si morphology after heat treatment T4 and T6. The morphology changes were observed using combination different analytical techniques - light microscopy (upon black-white etching) and scanning electron microscopy - SEM (upon deep etching). For the experiment was used recycled (secondary) aluminium cast alloy AlSi9Cu3.


2017 ◽  
Vol 891 ◽  
pp. 350-353
Author(s):  
Eva Tillová ◽  
Mária Chalupová ◽  
Lenka Kuchariková ◽  
Juraj Belan ◽  
Alan Vaško ◽  
...  

Present work is focused on study of the effect of Sr-modification (0 %; 0.03 % and 0.05 %) on the microstructure and mechanical properties of recycled AlSi8Cu2Mn cast alloy. For study and identification of intermetallic phases’ were utilized standard, colour and deep etching in order to reveal the three-dimensional morphology of the silicon particles and intermetallic phases. For element composition of the specimen was used X-ray analysis. Finally, the effect of modification on silicon morphology, mechanical properties (UTS, ductility, hardness and impact energy) was examined.The results show that the addition of Sr into AlSi8Cu2Mn cast alloy should act as a modifier, so it supposes to change the eutectic Si-morphology. However, its effect as a Si-modifier is not as significant as we have expected. Strontium refined and changed morphology of Si and thereby improves mechanical properties, first of all ductility and impact energy.


2021 ◽  
Vol 39 ◽  
pp. 1-8
Author(s):  
Monoj Baruah ◽  
Anil Borah

In this study both natural ageing (NA) and artificial ageing (AA) behaviour of Al-Mg-Si aluminium alloy having trace addition of 0.04 wt.% Sn (Tin) was studied at different solution heat treatment (SHT) temperature and time, ageing time and temperatures. Microstructural analysis was performed to identify the intermetallic phases. It was observed that peak NA hardness strongly depends on the SHT temperature and time. SHT at 530 for 0.5 hour, slows down the peak NA hardness attaining time of the alloy to a maximum of 5 days. But as the SHT time increases to 3.5 hours, the peak NA hardness attaining time reduced to 1 day. Alloy SHT at 530 for 1 hour attain a maximum peak hardness of HRB 24 during 3 days of NA. Artificial ageing improved the hardness of the NA alloy to a maximum of HRB 41 during 12 hours of ageing at 190 . The overall hardness of Al-Mg-Si-Sn as-cast alloy increases by 32 % during ageing process.


2017 ◽  
Vol 62 (3) ◽  
pp. 1591-1596 ◽  
Author(s):  
E. Tillová ◽  
D. Závodská ◽  
L. Kuchariková ◽  
M. Chalupová ◽  
J. Belan

AbstractFatigue properties of casting Al-alloys are very sensitive to the microstructural features of the alloy (e.g. size and morphology of the eutectic Si, secondary dendrite arm spacing - SDAS, intermetallics, grain size) and casting defects (porosity and oxides). Experimental study of bending fatigue properties of secondary cast alloys have shown that: fatigue tests up to 106-107cycles show mean fatigue limits of approx. 30-49 MPa (AlSi9Cu3 alloy - as cast state), approx. 65-76 MPa (AlSi9Cu3 alloy after solution treatment) and 60-70 MPa (self-hardened AlZn10Si8Mg alloy) in the tested casting condition; whenever large pore is present at or near the specimen’s surface, it will be the dominant cause of fatigue crack initiation; in the absence of large casting defects, the influence of microstructural features (Si morphology; Fe-rich phases) on the fatigue performance becomes more pronounced.


2010 ◽  
Vol 160-162 ◽  
pp. 831-835
Author(s):  
Zhong Wei Chen ◽  
Hai Fang Zhang ◽  
Jiang Chao Zhao

Microstructure of A357 alloy modified by Sr has been investigated by the Electron Back Scattering Diffraction (EBSD) mapping technique using a Field Emission Gun Scanning Electron Microscopy (FEG-SEM). An appropriate sample preparation technique by ion milling was applied to obtain a sufficiently smooth surface for EBSD mapping. Results show that the eutectic morphology in microstructure of A357 alloy modified by Sr was changed to fine fibrous, and the grain size was refined. By comparing the orientation of the aluminum in the eutectic to that of the primary aluminum dendrites, the nucleation and growth mechanism of the eutectic solidification in A357 cast alloy was determined. The eutectic Si phase of the modified sample nucleates on the heterogeneous nuclei located in the region between primary α-Al dendrites and grows up, while the eutectic Si phase of the sample without modification nucleates on the primary α-Al dendrites and grows up.


2014 ◽  
Vol 937 ◽  
pp. 182-186
Author(s):  
Quan An Li ◽  
Lei Lei Chen ◽  
Wen Chuang Liu ◽  
Xing Yuan Zhang ◽  
Hui Zhen Jiang

The influence of the solution treatment (at the temperature of 500-520°C for 4-12 h) on microstructures and mechanical properties of Mg-Gd-Y-Zr alloy was investigated by means of optical microscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD) and Vickers hardness measurement. The as-cast alloy contains a microstructure consisting of α-Mg matrix, Mg5Gd phase and Mg24Y5phase. With increasing solution temperature and time, the quantity of the primary particles (Mg5Gd and Mg24Y5) in the alloy continually decreased, and the degree of recrystallization gradually increased, which result in the gradual decrease of the Vickers hardness of the solution-treated alloys.


Sign in / Sign up

Export Citation Format

Share Document