scholarly journals Steering the current flow in twisted bilayer graphene

Author(s):  
Jesús Arturo Sánchez-Sánchez ◽  
Montserrat Navarro-Espino ◽  
Yonatan Betancur Ocampo ◽  
José Eduardo Barrios Vargas ◽  
Thomas Stegmann

Abstract A nanoelectronic device made of twisted bilayer graphene (TBLG) is proposed to steer the direction of the current flow. The ballistic electron current, injected at one edge of the bottom layer, can be guided predominantly to one of the lateral edges of the top layer. The current is steered to the opposite lateral edge, if either the twist angle is reversed or the electrons are injected in the valence band instead of the conduction band, making it possible to control the current flow by electric gates. When both graphene layers are aligned, the current passes straight through the system without changing its initial direction. The observed steering angle exceeds well the twist angle and emerges for a broad range of experimentally accessible parameters. It is explained by the twist angle and the trigonal shape of the energy bands beyond the van Hove singularity due to the Moiré interference pattern. As the shape of the energy bands depends on the valley degree of freedom, the steered current is valley polarized. Our findings show how to control and manipulate the current flow in TBLG. Technologically, they are of relevance for applications in twistronics and valleytronics.

2020 ◽  
Vol 233 ◽  
pp. 03004
Author(s):  
M.F.C. Martins Quintela ◽  
J.C.C. Guerra ◽  
S.M. João

In AA-stacked twisted bilayer graphene, the lower energy bands become completely flat when the twist angle passes through certain specific values: the so-called “magic angles”. The Dirac peak appears at zero energy due to the flattening of these bands when the twist angle is sufficiently small [1-3]. When a constant perpendicular magnetic field is applied, Landau levels start appearing as expected [5]. We used the Kernel Polynomial Method (KPM) [6] as implemented in KITE [7] to study the optical and electronic properties of these systems. The aim of this work is to analyze how the features of these quantities change with the twist angle in the presence of an uniform magnetic field.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nikhil Tilak ◽  
Xinyuan Lai ◽  
Shuang Wu ◽  
Zhenyuan Zhang ◽  
Mingyu Xu ◽  
...  

AbstractMagic-angle twisted bilayer graphene has emerged as a powerful platform for studying strongly correlated electron physics, owing to its almost dispersionless low-energy bands and the ability to tune the band filling by electrostatic gating. Techniques to control the twist angle between graphene layers have led to rapid experimental progress but improving sample quality is essential for separating the delicate correlated electron physics from disorder effects. Owing to the 2D nature of the system and the relatively low carrier density, the samples are highly susceptible to small doping inhomogeneity which can drastically modify the local potential landscape. This potential disorder is distinct from the twist angle variation which has been studied elsewhere. Here, by using low temperature scanning tunneling spectroscopy and planar tunneling junction measurements, we demonstrate that flat bands in twisted bilayer graphene can amplify small doping inhomogeneity that surprisingly leads to carrier confinement, which in graphene could previously only be realized in the presence of a strong magnetic field.


2020 ◽  
Author(s):  
Nikhil Tilak ◽  
xinyuan lai ◽  
Shuang Wu ◽  
Zhenyuan Zhang ◽  
Mingyu Xu ◽  
...  

Abstract Magic angle twisted bilayer graphene has emerged as a powerful platform for studying strongly correlated electron physics, owing to its almost dispersionless low-energy bands and the ability to tune the band filling by electrostatic gating. Techniques to control the twist angle between graphene layers have led to rapid experimental progress, but improving sample quality is essential for separating the delicate correlation physics from disorder effects. Owing to the 2D nature of the system and the relatively low carrier density, the samples are highly susceptible to small doping inhomogeneity which can drastically modify the local potential landscape. This potential disorder is distinct from the twist-angle variation which has been studied elsewhere. Understanding and mitigating the effects of such disorder is important. Here, we demonstrate using low temperature scanning tunneling spectroscopy and planar tunneling junction measurements, how flat bands in twisted bilayer graphene can amplify small doping inhomogeneity leading to carrier confinement, thus obscuring magic-angle physics.


2018 ◽  
Vol 115 (27) ◽  
pp. 6928-6933 ◽  
Author(s):  
Wei Yao ◽  
Eryin Wang ◽  
Changhua Bao ◽  
Yiou Zhang ◽  
Kenan Zhang ◽  
...  

The interlayer coupling can be used to engineer the electronic structure of van der Waals heterostructures (superlattices) to obtain properties that are not possible in a single material. So far research in heterostructures has been focused on commensurate superlattices with a long-ranged Moiré period. Incommensurate heterostructures with rotational symmetry but not translational symmetry (in analogy to quasicrystals) are not only rare in nature, but also the interlayer interaction has often been assumed to be negligible due to the lack of phase coherence. Here we report the successful growth of quasicrystalline 30° twisted bilayer graphene (30°-tBLG), which is stabilized by the Pt(111) substrate, and reveal its electronic structure. The 30°-tBLG is confirmed by low energy electron diffraction and the intervalley double-resonance Raman mode at 1383 cm−1. Moreover, the emergence of mirrored Dirac cones inside the Brillouin zone of each graphene layer and a gap opening at the zone boundary suggest that these two graphene layers are coupled via a generalized Umklapp scattering mechanism—that is, scattering of a Dirac cone in one graphene layer by the reciprocal lattice vector of the other graphene layer. Our work highlights the important role of interlayer coupling in incommensurate quasicrystalline superlattices, thereby extending band structure engineering to incommensurate superstructures.


2021 ◽  
Vol 13 (1) ◽  
pp. 50
Author(s):  
Wenyuan Shi

Graphene, as the thinnest material ever found, exhibits unconventionally relativistic behaviour of Dirac fermions. However, unusual phenomena (such as superconductivity) arise when stacking two graphene layers and twisting the bilayer graphene. The relativistic Dirac fermion in graphene has been widely studied and understood, but the large change observed in twisted bilayer graphene (TBG) is intriguing and still unclear because only van der Waals force (vdW) interlayer interaction is added from graphene to TBG and such a very weak interaction is expected to play a negligible role. To understand such dramatic variation, we studied the electronic structures of monolayer, bilayer and twisted bilayer graphene. Twisted bilayer graphene creates different moiré patterns when turned at different angles. We proposed tight-binding and effective continuum models and thereby drafted a computer code to calculate their electronic structures. Our calculated results show that the electronic structure of twisted bilayer graphene changes significantly even by a tiny twist. When bilayer graphene is twisted at special “magic angles”, flat bands appear. We examined how these flat bands are created, their properties and the relevance to some unconventional physical property such as superconductivity. We conclude that in the nanoscopic scale, similar looking atomic structures can create vastly different electronic structures. Like how P. W. Anderson stated that similar looking fields in science can have differences in his article “More is Different”, similar moiré patterns in twisted bilayer graphene can produce different electronic structures.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Girish Sharma ◽  
Indra Yudhistira ◽  
Nilotpal Chakraborty ◽  
Derek Y. H. Ho ◽  
M. M. Al Ezzi ◽  
...  

AbstractUnderstanding the normal-metal state transport in twisted bilayer graphene near magic angle is of fundamental importance as it provides insights into the mechanisms responsible for the observed strongly correlated insulating and superconducting phases. Here we provide a rigorous theory for phonon-dominated transport in twisted bilayer graphene describing its unusual signatures in the resistivity (including the variation with electron density, temperature, and twist angle) showing good quantitative agreement with recent experiments. We contrast this with the alternative Planckian dissipation mechanism that we show is incompatible with available experimental data. An accurate treatment of the electron-phonon scattering requires us to go well beyond the usual treatment, including both intraband and interband processes, considering the finite-temperature dynamical screening of the electron-phonon matrix element, and going beyond the linear Dirac dispersion. In addition to explaining the observations in currently available experimental data, we make concrete predictions that can be tested in ongoing experiments.


2019 ◽  
Vol 5 (9) ◽  
pp. eaaw9770 ◽  
Author(s):  
Emilio Codecido ◽  
Qiyue Wang ◽  
Ryan Koester ◽  
Shi Che ◽  
Haidong Tian ◽  
...  

The emergence of flat bands and correlated behaviors in “magic angle” twisted bilayer graphene (tBLG) has sparked tremendous interest, though its many aspects are under intense debate. Here we report observation of both superconductivity and the Mott-like insulating state in a tBLG device with a twist angle of ~0.93°, which is smaller than the magic angle by 15%. At an electron concentration of ±5 electrons/moiré unit cell, we observe a narrow resistance peak with an activation energy gap ~0.1 meV. This indicates additional correlated insulating state, and is consistent with theory predicting a high-energy flat band. At doping of ±12 electrons/moiré unit cell we observe resistance peaks arising from the Dirac points in the spectrum. Our results reveal that the “magic” range of tBLG is in fact larger than what is previously expected, and provide a wealth of new information to help decipher the strongly correlated phenomena observed in tBLG.


Nanoscale ◽  
2014 ◽  
Vol 6 (22) ◽  
pp. 13402-13408 ◽  
Author(s):  
Hongyang Li ◽  
Hao Ying ◽  
Xiangping Chen ◽  
Denis L. Nika ◽  
Alexandr I. Cocemasov ◽  
...  

The heat carriers – phonons – in twisted bilayer graphene do not behave in the same manner as that observed in individual graphene layers.


2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Jianbo Yin ◽  
Huan Wang ◽  
Han Peng ◽  
Zhenjun Tan ◽  
Lei Liao ◽  
...  

Abstract Graphene with ultra-high carrier mobility and ultra-short photoresponse time has shown remarkable potential in ultrafast photodetection. However, the broad and weak optical absorption (∼2.3%) of monolayer graphene hinders its practical application in photodetectors with high responsivity and selectivity. Here we demonstrate that twisted bilayer graphene, a stack of two graphene monolayers with an interlayer twist angle, exhibits a strong light–matter interaction and selectively enhanced photocurrent generation. Such enhancement is attributed to the emergence of unique twist-angle-dependent van Hove singularities, which are directly revealed by spatially resolved angle-resolved photoemission spectroscopy. When the energy interval between the van Hove singularities of the conduction and valance bands matches the energy of incident photons, the photocurrent generated can be significantly enhanced (up to ∼80 times with the integration of plasmonic structures in our devices). These results provide valuable insight for designing graphene photodetectors with enhanced sensitivity for variable wavelength.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Keiju Sato ◽  
Naoki Hayashi ◽  
Takahiro Ito ◽  
Noriyuki Masago ◽  
Makoto Takamura ◽  
...  

AbstractMagic-angle twisted bilayer graphene, consisting of two graphene layers stacked at a special angle, exhibits superconductivity due to the maximized density of states at the energy of the flat band. Generally, experiments on twisted bilayer graphene have been performed using micrometer-scale samples. Here we report the fabrication of twisted bilayer graphene with an area exceeding 3 × 5 mm2 by transferring epitaxial graphene onto another epitaxial graphene, and observation of a flat band and large bandgap using angle-resolved photoemission spectroscopy. Our results suggest that the substrate potential induces both the asymmetrical doping in large angle twisted bilayer graphene and the electron doped nature of the flat band in magic-angle twisted bilayer graphene.


Sign in / Sign up

Export Citation Format

Share Document