Clinical and Experimental Studies on the Use of 3,5-Diiodothyropropionic Acid, a Thyroid Hormone Analogue, in Heart Failure

Thyroid ◽  
2002 ◽  
Vol 12 (6) ◽  
pp. 527-533 ◽  
Author(s):  
Eugene Morkin ◽  
Gregory D. Pennock ◽  
Peter H. Spooner ◽  
Joseph J. Bahl ◽  
Steven Goldman
Author(s):  
S. M. Pyvоvar ◽  
Yu. S. Rudyk ◽  
О. B. Krоtоva ◽  
L. V. Panina

Thyroid hormone therapy in the setting of heart failure is still an «open book» today. There are several unanswered questions: the regimen, doses and schedule of the use of thyroid hormones, the consequences of such therapy. At the same time, the presence of a comorbid pathology of the thyroid gland, which requires the appointment of levothyroxine, allows one to partially answer these questions. Thyroid hormones affect the diastolic and systolic functions of the myocardium. Ventricular contractile function is also affected by changes in hemodynamic conditions secondary to thyroid hormones and peripheral vascular tone. Thyroid hormone homeostasis maintains a positive ventricular-arterial ratio, resulting in a favorable balance for heart function. Experimental studies in rats have shown that chronic hypothyroidism alone can eventually lead to heart failure. Other studies suggest a decrease in the level of free triiodothyronine in the myocardium after myocardial infarction or with arterial hypertension due to the activation of type 3 deiodinase, which leads to deactivation of triiodothyronine and thyroxine. To address these issues, the researchers propose conducting multicenter, randomized, placebo-controlled trials to evaluate the effects of thyroxine replacement in patients with chronic heart failure. The review highlights the growing body of evidence from animal studies and small clinical trials that suggests that low thyroid activity at the cardiac tissue level can negatively affect the progression of heart failure and that treatment with thyroid hormones can lead to an improved prognosis.


1993 ◽  
Vol 56 (1) ◽  
pp. S54-S60 ◽  
Author(s):  
Eugene Morkin ◽  
Gregory D. Pennock ◽  
Thomas E. Raya ◽  
Joseph J. Bahl ◽  
Steven Goldman

Thyroid ◽  
1996 ◽  
Vol 6 (5) ◽  
pp. 521-526 ◽  
Author(s):  
EUGENE MORKIN ◽  
GREGORY D. PENNOCK ◽  
THOMAS E. RAYA ◽  
JOSEPH J. BAHL ◽  
STEVEN GOLDMAN

2007 ◽  
Vol 157 (4) ◽  
pp. 515-520 ◽  
Author(s):  
Constantinos Pantos ◽  
Athanasios Dritsas ◽  
Iordanis Mourouzis ◽  
Antonios Dimopoulos ◽  
Georgios Karatasakis ◽  
...  

Objective: Previous experimental studies have provided evidence showing that changes in thyroid hormone signaling correspond to alterations in myocardial function in animal models of heart failure. The present study further explores whether thyroid hormone alterations are correlated with the functional status of the myocardium in patients with heart failure. Methods: In this study, 37 patients with mean ejection fraction (EF%) of 26.2 (8.2) were included. Myocardial performance was assessed by echocardiography and cardiopulmonary exercise testing. Total tri-iodothyronine (T3), thyroxine, and TSH levels were measured in plasma. Results: Total T3 was strongly correlated with VO2max (r = 0.78, P = 2 × 10−8). Furthermore, multivariate analysis revealed that total T3 was an independent predictor of VO2max (P = 0.000 005). A weaker but significant correlation was also found between total T3 and EF% (r = 0.56, P = 0.0004), systolic (r = 0.43, P = 0.009) and diastolic (r = 0.46, P = 0.004) blood pressure. Conclusions: changes in thyroid hormone were closely correlated to myocardial functional status in patients with heart failure. These data probably indicate a possible role of thyroid hormone in the pathophysiology of heart failure and confirm previous experimental reports.


The prevalence of heart failure is markedly increased in individuals with diabetes mellitus. Numerous observational studies suggest that this increased risk for heart failure can be attributed to exacerbated vascular complications and the presence of increased risk factors in diabetic subjects. In addition, experimental studies revealed the presence of a number of distinct molecular alterations in the myocardium that occur independently of vascular disease and hypertension. Many of these molecular alterations are similarly observed in failing hearts of nondiabetic patients and have thus been proposed to contribute to the increased risk for heart failure in diabetes. The interest in understanding the underlying mechanisms of impaired cardio- vascular outcomes in diabetic individuals has much increased since the demonstration of cardioprotective effects of SGLT-2 inhibitors and GLP-1 receptor agonists in recent clinical trials. The current review therefore summarizes the distinct mechanisms that have been proposed to increase the risk for heart failure in diabetes mellitus.


2018 ◽  
Vol 24 (3) ◽  
pp. 341-358 ◽  
Author(s):  
Xiaotong Ji ◽  
Yingying Zhang ◽  
Guangke Li ◽  
Nan Sang

Recently, numerous studies have found that particulate matter (PM) exposure is correlated with increased hospitalization and mortality from heart failure (HF). In addition to problems with circulation, HF patients often display high expression of cytokines in the failing heart. Thus, as a recurring heart problem, HF is thought to be a disorder characterized in part by the inflammatory response. In this review, we intend to discuss the relationship between PM exposure and HF that is based on inflammatory mechanism and to provide a comprehensive, updated evaluation of the related studies. Epidemiological studies on PM-induced heart diseases are focused on high concentrations of PM, high pollutant load exposure in winter, or susceptible groups with heart diseases, etc. Furthermore, it appears that the relationship between fine or ultrafine PM and HF is stronger than that between HF and coarse PM. However, fewer studies paid attention to PM components. As for experimental studies, it is worth noting that coarse PM may indirectly promote the inflammatory response in the heart through systematic circulation of cytokines produced primarily in the lungs, while ultrafine PM and its components can enter circulation and further induce inflammation directly in the heart. In terms of PM exposure and enhanced inflammation during the pathogenesis of HF, this article reviews the following mechanisms: hemodynamics, oxidative stress, Toll-like receptors (TLRs) and epigenetic regulation. However, many problems are still unsolved, and future work will be needed to clarify the complex biologic mechanisms and to identify the specific components of PM responsible for adverse effects on heart health.


Thyroid ◽  
2004 ◽  
Vol 14 (5) ◽  
pp. 345-353 ◽  
Author(s):  
Parviz Yazdanparast ◽  
Bo Carlsson ◽  
Aarne Oikarinen ◽  
Juha Risteli ◽  
Jan Faergemann

Sign in / Sign up

Export Citation Format

Share Document