scholarly journals Correction to: Mutations in RHOT1 Disrupt Endoplasmic Reticulum–Mitochondria Contact Sites Interfering with Calcium Homeostasis and Mitochondrial Dynamics in Parkinson's Disease by Grossmann et al. Antioxid. Redox Signal. 31: 1213-1234, 2019. DOI: 10.1089/ars.2018.7718

2020 ◽  
Vol 33 (11) ◽  
pp. 786-787
2019 ◽  
Vol 31 (16) ◽  
pp. 1213-1234 ◽  
Author(s):  
Dajana Grossmann ◽  
Clara Berenguer-Escuder ◽  
Marie Estelle Bellet ◽  
David Scheibner ◽  
Jill Bohler ◽  
...  

2020 ◽  
Vol 21 (5) ◽  
pp. 1772 ◽  
Author(s):  
Lucia Barazzuol ◽  
Flavia Giamogante ◽  
Marisa Brini ◽  
Tito Calì

Endoplasmic reticulum (ER)–mitochondria contact sites are critical structures for cellular function. They are implicated in a plethora of cellular processes, including Ca2+ signalling and mitophagy, the selective degradation of damaged mitochondria. Phosphatase and tensin homolog (PTEN)-induced kinase (PINK) and Parkin proteins, whose mutations are associated with familial forms of Parkinson’s disease, are two of the best characterized mitophagy players. They accumulate at ER–mitochondria contact sites and modulate organelles crosstalk. Alterations in ER–mitochondria tethering are a common hallmark of many neurodegenerative diseases including Parkinson’s disease. Here, we summarize the current knowledge on the involvement of PINK1 and Parkin at the ER–mitochondria contact sites and their role in the modulation of Ca2+ signalling and mitophagy.


2020 ◽  
Vol 29 (8) ◽  
pp. 1353-1364 ◽  
Author(s):  
Clara Berenguer-Escuder ◽  
Dajana Grossmann ◽  
Paul Antony ◽  
Giuseppe Arena ◽  
Kobi Wasner ◽  
...  

Abstract Mitochondrial Rho GTPase 1 (Miro1) protein is a well-known adaptor for mitochondrial transport and also regulates mitochondrial quality control and function. Furthermore, Miro1 was associated with mitochondrial-endoplasmic reticulum (ER) contact sites (MERCs), which are key regulators of cellular calcium homeostasis and the initiation of autophagy. Impairments of these mechanisms were linked to neurodegeneration in Parkinson’s disease (PD). We recently revealed that PD fibroblasts harboring Miro1 mutations displayed dysregulations in MERC organization and abundance, affecting mitochondrial homeostasis and clearance. We hypothesize that mutant Miro1 impairs the function of MERCs and mitochondrial dynamics, altering neuronal homeostasis and integrity in PD. PD skin fibroblasts harboring the Miro1-R272Q mutation were differentiated into patient-derived neurons. Live-cell imaging and immunocytochemistry were used to study mitophagy and the organization and function of MERCs. Markers of autophagy or mitochondrial function were assessed by western blotting. Quantification of organelle juxtapositions revealed an increased number of MERCs in patient-derived neurons. Live-cell imaging results showed alterations of mitochondrial dynamics and increased sensitivity to calcium stress, as well as reduced mitochondrial clearance. Finally, western blot analysis indicated a blockage of the autophagy flux in Miro1-mutant neurons. Miro1-mutant neurons display altered ER-mitochondrial tethering compared with control neurons. This alteration likely interferes with proper MERC function, contributing to a defective autophagic flux and cytosolic calcium handling capacity. Moreover, mutant Miro1 affects mitochondrial dynamics in neurons, which may result in disrupted mitochondrial turnover and altered mitochondrial movement.


Biomolecules ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1669
Author(s):  
Tuladhar Sunanda ◽  
Bipul Ray ◽  
Arehally M. Mahalakshmi ◽  
Abid Bhat ◽  
Luay Rashan ◽  
...  

The past few decades have seen an increased emphasis on the involvement of the mitochondrial-associated membrane (MAM) in various neurodegenerative diseases, particularly in Parkinson’s disease (PD) and Alzheimer’s disease (AD). In PD, alterations in mitochondria, endoplasmic reticulum (ER), and MAM functions affect the secretion and metabolism of proteins, causing an imbalance in calcium homeostasis and oxidative stress. These changes lead to alterations in the translocation of the MAM components, such as IP3R, VDAC, and MFN1 and 2, and consequently disrupt calcium homeostasis and cause misfolded proteins with impaired autophagy, distorted mitochondrial dynamics, and cell death. Various reports indicate the detrimental involvement of the brain renin–angiotensin system (RAS) in oxidative stress, neuroinflammation, and apoptosis in various neurodegenerative diseases. In this review, we attempted to update the reports (using various search engines, such as PubMed, SCOPUS, Elsevier, and Springer Nature) demonstrating the pathogenic interactions between the various proteins present in mitochondria, ER, and MAM with respect to Parkinson’s disease. We also made an attempt to speculate the possible involvement of RAS and its components, i.e., AT1 and AT2 receptors, angiotensinogen, in this crosstalk and PD pathology. The review also collates and provides updated information on the role of MAM in calcium signaling, oxidative stress, neuroinflammation, and apoptosis in PD.


2021 ◽  
pp. 1-10
Author(s):  
Vera Kovaleva ◽  
Mart Saarma

Parkinson’s disease (PD) pathology involves progressive degeneration and death of vulnerable dopamine neurons in the substantia nigra. Extensive axonal arborisation and distinct functions make this type of neurons particularly sensitive to homeostatic perturbations, such as protein misfolding and Ca2 + dysregulation. Endoplasmic reticulum (ER) is a cell compartment orchestrating protein synthesis and folding, as well as synthesis of lipids and maintenance of Ca2 +-homeostasis in eukaryotic cells. When misfolded proteins start to accumulate in ER lumen the unfolded protein response (UPR) is activated. UPR is an adaptive signalling machinery aimed at relieving of protein folding load in the ER. When UPR is chronic, it can either boost neurodegeneration and apoptosis or cause neuronal dysfunctions. We have recently discovered that mesencephalic astrocyte-derived neurotrophic factor (MANF) exerts its prosurvival action in dopamine neurons and in animal model of PD through the direct binding to UPR sensor inositol-requiring protein 1 alpha (IRE1α) and attenuation of UPR. In line with this, UPR targeting resulted in neuroprotection and neurorestoration in various preclinical PD animal models. Therefore, growth factors (GFs), possessing both neurorestorative activity and restoration of protein folding capacity are attractive as drug candidates for PD treatment especially their blood-brain barrier penetrating analogs and small molecule mimetics. In this review, we discuss ER stress as a therapeutic target to treat PD; we summarize the existing preclinical data on the regulation of ER stress for PD treatment. In addition, we point out the crucial aspects for successful clinical translation of UPR-regulating GFs and new prospective in GFs-based treatments of PD, focusing on ER stress regulation.


2021 ◽  
Vol 10 (3) ◽  
pp. 343-357
Author(s):  
Asunur ADALI ◽  
Selinay Başak - ERDEMLİ-KÖSE ◽  
Anıl YİRÜN ◽  
Pınar ERKEKOĞLU

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Lingna Xu ◽  
Xi Wang ◽  
Jia Zhou ◽  
Yunyi Qiu ◽  
Weina Shang ◽  
...  

Endoplasmic reticulum (ER)–mitochondria contact sites (ERMCSs) are crucial for multiple cellular processes such as calcium signaling, lipid transport, and mitochondrial dynamics. However, the molecular organization, functions, regulation of ERMCS, and the physiological roles of altered ERMCSs are not fully understood in higher eukaryotes. We found that Miga, a mitochondrion located protein, markedly increases ERMCSs and causes severe neurodegeneration upon overexpression in fly eyes. Miga interacts with an ER protein Vap33 through its FFAT-like motif and an amyotrophic lateral sclerosis (ALS) disease related Vap33 mutation considerably reduces its interaction with Miga. Multiple serine residues inside and near the Miga FFAT motif were phosphorylated, which is required for its interaction with Vap33 and Miga-mediated ERMCS formation. The interaction between Vap33 and Miga promoted further phosphorylation of upstream serine/threonine clusters, which fine-tuned Miga activity. Protein kinases CKI and CaMKII contribute to Miga hyperphosphorylation. MIGA2, encoded by the miga mammalian ortholog, has conserved functions in mammalian cells. We propose a model that shows Miga interacts with Vap33 to mediate ERMCSs and excessive ERMCSs lead to neurodegeneration.


PLoS ONE ◽  
2010 ◽  
Vol 5 (2) ◽  
pp. e9367 ◽  
Author(s):  
Guido Krebiehl ◽  
Sabine Ruckerbauer ◽  
Lena F. Burbulla ◽  
Nicole Kieper ◽  
Brigitte Maurer ◽  
...  

2021 ◽  
Author(s):  
Hema Saranya Ilamathi ◽  
Sara Benhammouda ◽  
Justine Desrochers-Goyette ◽  
Matthew A Lines ◽  
Marc Germain

Mitochondria are multi-faceted organelles crucial for cellular homeostasis that contain their own genome. Mitochondrial DNA (mtDNA) codes for several essential components of the electron transport chain, and mtDNA maintenance defects lead to mitochondrial diseases. mtDNA replication occurs at endoplasmic reticulum (ER)-mitochondria contact sites and is regulated by mitochondrial dynamics. Specifically, mitochondrial fusion is essential for mtDNA maintenance. In contrast, while loss of mitochondrial fission causes the aggregation of nucleoids (mtDNA-protein complexes), its role in nucleoid distribution remains unclear. Here, we show that the mitochondrial fission protein DRP1 regulates nucleoid segregation by altering ER sheets, the ER structure associated with protein synthesis. Specifically, DRP1 loss or mutation leads to altered ER sheets that physically interact with mitobulbs, mitochondrial structures containing aggregated nucleoids. Importantly, nucleoid distribution and mtDNA replication were rescued by expressing the ER sheet protein CLIMP63. Thus, our work identifies a novel mechanism by which DRP1 regulates mtDNA replication and distribution.


Sign in / Sign up

Export Citation Format

Share Document