Circ_0016760 Acts as a Sponge of MicroRNA-4295 to Enhance E2F Transcription Factor 3 Expression and Facilitates Cell Proliferation and Glycolysis in Nonsmall Cell Lung Cancer

Author(s):  
Xuebo Yan ◽  
Tong Wang ◽  
Jiong Wang
2017 ◽  
Vol 42 (1) ◽  
pp. 346-356 ◽  
Author(s):  
Yang Cao ◽  
Dan Zhao ◽  
Ping Li ◽  
Lanrong Wang ◽  
Bingli Qiao ◽  
...  

Aim: The contribution of the inflammatory mediator interleukin-17 (IL-17) in nonsmall cell lung cancer (NSCLC) malignancy has been reported in the literature. MicroRNA-181a-5p (miR-181a-5p) acts as a tumor suppressor which can regulate target gene at the posttranscriptional level. Our study aimed to investigate the interaction between IL-17 and miR-181a-5p in NSCLC. Methods: 35 patients with NSCLC and 24 COPD controls were selected and examined in our study. In vitro, H226 and H460 cell lines were exposed to different doses (20, 40, 60, and 80 ng/mL) of IL-17 to examine the effect of IL-17 on miR-181a-5p and vascular cell adhesion molecule 1 (VCAM-1) expression. MiR-181 mimic and miR-181a-5p inhibitor were transfected to explore the regulation of VCAM-1 as well as tumor cell proliferation and migration. Results: miR-181a-5p expression was downregulated, and IL-17 and VCAM-1 expression was upregulated in NSCLC tissues. Furthermore, IL-17 decreased miR-181a-5p expression but increased VCAM-1 expression in H226 and H460 cells. MiR-181 regulated VCAM-1 expression through binding to 3’-UTR sequence. MiR-181 attenuated tumor cell proliferation and migration. IL-17 modulated miR-181a-5p expression through activating NF-κB but not Stat3. Conclusion: Taken together, our data show the regulation of VCAM-1 expression by miR-181a-5p under IL-17 exposure, predicting a potential way for counteracting cancer metastasis.


2020 ◽  
Vol 19 ◽  
pp. 153303382094261
Author(s):  
Qiang Ma ◽  
Rungui Niu ◽  
Wei Huang ◽  
Liangshan Da ◽  
Yanlei Tang ◽  
...  

Background: PTPRG antisense RNA 1 has been well-documented to exert an oncogenic role in diverse neoplasms. However, the precise role of PTPRG antisense RNA 1 in regulating radiosensitivity of nonsmall cell lung cancer cells remains largely elusive. Methods: Expression levels of PTPRG antisense RNA 1 and miR-200c-3p in nonsmall cell lung cancer tissues and cells were detected by quantitative real-time polymerase chain reaction, while transcription factor 4 expression was examined by immunohistochemistry and Western blot. After nonsmall cell lung cancer cells were exposed to X-ray with different doses in vitro, Cell Counting Kit -8 assay and colony formation assay were conducted to determine the influence of PTPRG antisense RNA 1 on cell viability. Interaction between miR-200c-3p and PTPRG antisense RNA 1 as well as transcription factor 4 was investigated by dual luciferase reporter assay. Result: In nonsmall cell lung cancer tissues, the expressions of PTPRG antisense RNA 1 and transcription factor 4 were significantly upregulated, whereas the expression of miR-200c-3p was downregulated. It was also proved that PTPRG antisense RNA 1 and 3′-untranslated region of transcription factor 4 can bind to miR-200c-3p. Under X-ray irradiation, overexpressed PTPRG antisense RNA 1 could promote the viability and enhance the radioresistance of nonsmall cell lung cancer cells, and this effect was partially weakened by miR-200c-3p mimics. Transcription factor 4 was identified as a target gene of miR-200c-3p, which could be positively regulated by PTPRG antisense RNA 1. Conclusion: PTPRG antisense RNA 1 reduces the radiosensitivity of nonsmall cell lung cancer cells via modulating miR-200c-3p/TCF4 axis.


2017 ◽  
Vol 13 (8) ◽  
pp. 1481-1494 ◽  
Author(s):  
Sainitin Donakonda ◽  
Swati Sinha ◽  
Shrinivas Nivrutti Dighe ◽  
Manchanahalli R Satyanarayana Rao

Systematic functional network analysis of ASCL1 revealed that it regulates mitosis and cell proliferation pathways and has distinct functions in glioma and SCLC.


Sign in / Sign up

Export Citation Format

Share Document