The Biological Effects of Interleukin-17A on Adhesion Molecules Expression and Foam Cell Formation in Atherosclerotic Lesions

2019 ◽  
Vol 39 (11) ◽  
pp. 694-702 ◽  
Author(s):  
Shohei Shiotsugu ◽  
Toshinori Okinaga ◽  
Manabu Habu ◽  
Daigo Yoshiga ◽  
Izumi Yoshioka ◽  
...  
2018 ◽  
Vol 132 (23) ◽  
pp. 2493-2507 ◽  
Author(s):  
Yuki Sato ◽  
Rena Watanabe ◽  
Nozomi Uchiyama ◽  
Nana Ozawa ◽  
Yui Takahashi ◽  
...  

Vasostatin-1, a chromogranin A (CgA)-derived peptide (76 amino acids), is known to suppress vasoconstriction and angiogenesis. A recent study has shown that vasostatin-1 suppresses the adhesion of human U937 monocytes to human endothelial cells (HECs) via adhesion molecule down-regulation. The present study evaluated the expression of vasostatin-1 in human atherosclerotic lesions and its effects on inflammatory responses in HECs and human THP-1 monocyte-derived macrophages, macrophage foam cell formation, migration and proliferation of human aortic smooth muscle cells (HASMCs) and extracellular matrix (ECM) production by HASMCs, and atherogenesis in apolipoprotein E-deficient (ApoE−/−) mice. Vasostatin-1 was expressed around Monckeberg’s medial calcific sclerosis in human radial arteries. Vasostatin-1 suppressed lipopolysaccharide (LPS)-induced up-regulation of monocyte chemotactic protein-1 (MCP-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin in HECs. Vasostatin-1 suppressed inflammatory M1 phenotype and LPS-induced interleukin-6 (IL-6) secretion via nuclear factor-κB (NF-κB) down-regulation in macrophages. Vasostatin-1 suppressed oxidized low-density lipoprotein (oxLDL)-induced foam cell formation associated with acyl-CoA:cholesterol acyltransferase-1 (ACAT-1) and CD36 down-regulation and ATP-binding cassette transporter A1 (ABCA1) up-regulation in macrophages. In HASMCs, vasostatin-1 suppressed angiotensin II (AngII)-induced migration and collagen-3 and fibronectin expression via decreasing ERK1/2 and p38 phosphorylation, but increased elastin expression and matrix metalloproteinase (MMP)-2 and MMP-9 activities via increasing Akt and JNK phosphorylation. Vasostatin-1 did not affect the proliferation and apoptosis in HASMCs. Four-week infusion of vasostatin-1 suppressed the development of aortic atherosclerotic lesions with reductions in intra-plaque inflammation, macrophage infiltration, and SMC content, and plasma glucose level in ApoE−/− mice. These results indicate the inhibitory effects of vasostatin-1 against atherogenesis. The present study provided the first evidence that vasostatin-1 may serve as a novel therapeutic target for atherosclerosis.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Takuya Watanabe ◽  
Yoshitaka Iso ◽  
Shinji Koba ◽  
Tetsuo Sakai ◽  
Gang Xu ◽  
...  

Human heregulins, neuregulin-1 type I polypeptides known to activate proliferation, differentiation, and survival of glial cells, neurons, and myocytes, were recently found to be expressed in macrophage foam cells within human coronary atherosclerotic lesions. Macrophage foam cell formation, characterized by cholesterol ester (CE) accumulation, is modulated by scavenger receptor class A (SR-A), acyl-CoA:cholesterol acyltransferase-1 (ACAT1), and ATP-binding cassette transporter A1 (ABCA1). The present study clarified the functional roles of heregulins in macrophage foam cell formation and atherosclerosis. Plasma heregulin-beta1 levels were significantly decreased in 31 patients with acute coronary syndrome (ACS) and 33 patients with stable angina pectoris as compared with 34 mild hypertensive patients and 40 healthy volunteers (1.3+/−0.3, 2.0+/−0.4 versus 7.6+/−1.4, 8.2+/−1.2 ng/mL; at least P < 0.01). Immunoreactive heregulins and these receptor c-erbB3 were detectable within human coronary atherothrombosis obtained from ACS patients. In primary cultured human monocyte-macrophages, the expression of endogenous heregulins, heregulin-beta1, and c-erbB3 increased during monocytic differentiation into macrophages. In human macrophages differentiated by 7-day culture, exogenous heregulin-beta1, but not heregulin-alpha, significantly reduced acetylated low-density lipoprotein (acLDL)-induced CE accumulation by reducing SR-A and ACAT1 expression and by increasing ABCA1 expression at both mRNA and protein levels. Heregulin-beta1 significantly decreased endocytic uptake of [ 125 I]acLDL and increased cholesterol efflux by apolipoprotein A1 from human macrophages. Chronic infusion of heregulin-beta1 by osmotic mini-pumps into apolipoprotein E-deficient mice significantly suppressed the progression of macrophage-driven atherosclerotic lesions by 64%. Our study provides the first evidence that heregulin-beta1 may participate in anti-atherogenesis by suppressing macrophage foam cell formation via SR-A and ACAT1 down-regulation and ABCA1 up-regulation.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Ping-Chung Leung ◽  
Chi-Man Koon ◽  
Clara Bik-San Lau ◽  
Ping Chook ◽  
William King-Fai Cheng ◽  
...  

Objective. Mortality arising from cardiovascular pathologies remains one of the highest. Maintenance of cardiovascular health therefore remains a universal concern. Interventional therapies and medications have made impressive advances, but preventive measures would be of the same importance.Method. Ten years’ search for a simple herbal formula has resulted in a two-herb combination, consisting ofSalviae Miltiorrhizae Radix et RhizomaandPuerariae Lobatae Radix. The formula has been studied extensively on cardiovascular biological platforms and then put on three clinical trials.Results. In the laboratory, the formula was found to have the biological effects of anti-inflammation, anti-oxidation, anti-foam cell formation on vascular endothelium, and vasodilation. Clinical trials using ultrasonic carotid intima thickness as a surrogate marker showed very significant benefits. No significant adverse effects were encountered.Conclusion. It is therefore recommended that the herbal formula could be used as an adjuvant therapy in cardiac patients under treatment or as a preventive agent among the susceptible.


2011 ◽  
Vol 106 (11) ◽  
pp. 763-771 ◽  
Author(s):  
Ine Wolfs ◽  
Marjo Donners ◽  
Menno de Winther

SummaryThe phenotype of macrophages in atherosclerotic lesions can vary dramatically, from a large lipid laden foam cell to a small inflammatory cell. Classically, the concept of macrophage heterogeneity discriminates between two extremes called either pro-inflammatory M1 macrophages or anti-inflammatory M2 macrophages. Polarisation of plaque macrophages is predominantly determined by the local micro-environment present in the atherosclerotic lesion and is rather more complex than typically described by the M1/M2 paradigm. In this review we will discuss the role of various polarising factors in regulating the phenotypical state of plaque macrophages. We will focus on two main levels of phenotype regulation, one determined by differentiation factors produced in the lesion and the other determined by T-cell-derived polarising cytokines. With foam cell formation being a key characteristic of macrophages during atherosclerosis initiation and progression, these polarisation factors will also be linked to lipid handling of macrophages.


2001 ◽  
Vol 154 (2) ◽  
pp. 317-328 ◽  
Author(s):  
David L Feldman ◽  
Wilbur K Sawyer ◽  
Michael R Jeune ◽  
Therese C Mogelesky ◽  
Jean Von Linden-Reed ◽  
...  

2016 ◽  
Vol 36 (suppl_1) ◽  
Author(s):  
Huan Tao ◽  
Patricia G Yancey ◽  
John L Blakemore ◽  
Youmin Zhang ◽  
Lei Ding ◽  
...  

Background: Autophagy modulates vascular cell lipid metabolism, lipid droplet turnover, foam cell formation, cell survival and death, and inflammation. Scavenger receptor class B type I (SR-BI) deficiency causes impaired lysosome function in macrophages and erythrocytes. Methods and Results: Bone marrow transplantation studies were performed in ApoE and LDLR deficient mice to examine the effects of hematopoietic SR-BI deletion on atherosclerotic lesion autophagy. In addition, in vitro studies compared WT versus SR-BI -/- macrophages. Under conditions of cholesterol induced stress, the mRNA and protein levels of critical autophagy players including ATG5, ATG6/Belcin-1, ATG7 and LC3II were decreased by 37.8% to 84.6% (P<0.05 to 0.01) in SR-B1 -/- macrophages and atherosclerotic aortic tissue compared to controls. Electron microscopic analysis showed that SR-BI -/- versus WT macrophages had 80% fewer (P<0.05) autophagsomes in response to cholesterol enrichment. Macrophage SR-BI deficiency led to 1.8-fold (P<0.05) more lipid deposition and 2.5-fold more (P<0.01) apoptosis in response to oxidized LDL. Furthermore, hematopoietic SR-BI deletion caused 2.3 fold (P<0.05) more cell death in aortic atherosclerotic lesions compared to the WT control. Pharmacologic activation of autophagy did not reduce the levels of lipid droplets or cell apoptosis in SR-BI null macrophages vs WT control. WT peritoneal macrophages were used to examine SR-BI subcellular distribution and its interaction with VPS34/Beclin-1. In response to induction of autophagy, macrophage SR-BI was expressed in lysosomes and co-localized with LC3-II. Furthermore, we found that SR-BI directly interacted with the VPS34/Beclin-1 complex. Conclusions: SR-BI deficiency leads to defective autophagy and accelerates macrophage foam cell formation and apoptosis in experimental mouse atherosclerotic lesions. Macrophage SR-BI regulates expression of critical autophagy players and directly modulates autophagy via the VPS34/Beclin-1 pathway, identifying novel targets for the treatment of atherosclerosis.


Author(s):  
Jing Zhao ◽  
Xin-He Shi

AbstractC-reactive protein (CRP) has two structurally distinct isoforms, the CRP pentamer and the CRP monomer. A role for the CRP monomer in atherosclerosis is emerging, but the underlying mechanisms are only beginning to be understood. Monocytes are an important contributor to atherosclerosis, and foam cell formation is the hallmark of atherogenesis. However, whether the CRP monomer can directly interact with the monocytes and modulate their responses remains unknown. Furthermore, although FcγRIII (CD16) has been identified as the receptor for the CRP monomer on neutrophils, its role in mediating the CRP monomer’s biological effects in other cell types has been questioned. In this study, we investigated the interaction of the CRP monomer with the monocytes using the U937 monocytic cell line. The CRP monomer specifically binds to U937 cells. This binding is unique in that it is independent of FcγRs and insensitive to protease digestion of the cell surface proteins. Further assays revealed that the CRP monomer directly incorporates into the plasma membrane. Interestingly, the presence of the CRP monomer efficiently retards oxidized low-density lipoprotein-induced foam cell formation of PMA-differentiated U937 macrophages and peripheral blood monocytic cell-derived macrophages. These findings provide additional evidence for the notion that the CRP monomer is an active CRP isoform that plays a role in atherogenesis via the direct modulation of the behavior of the monocytes.


Sign in / Sign up

Export Citation Format

Share Document