scholarly journals Modulation of intracellular calcium levels inhibits secretion of collagenase 1 by migrating keratinocytes.

1997 ◽  
Vol 8 (5) ◽  
pp. 811-824 ◽  
Author(s):  
B D Sudbeck ◽  
B K Pilcher ◽  
A P Pentland ◽  
W C Parks

Calcium concentration influences keratinocyte differentiation, and, following injury, keratinocytes move through an environment of changing calcium levels. Because these migrating cells in wounds invariably express collagenase 1, we assessed if modulation of calcium levels regulates collagenase 1 production by primary human keratinocytes. Accurately reflecting the confined spatial pattern of enzyme production seen in vivo, collagenase 1 mRNA was expressed only by keratinocytes migrating from foci of differentiated cells. Treatment with calcium ionophores A23187 or thapsigargin markedly inhibited the basal and phorbol 12-myristate 13-acetate-(PMA) stimulated accumulation of keratinocyte collagenase 1 in the medium but did not affect collagenase 1 production by control or PMA-treated fibroblasts. A23187-mediated inhibition of collagenase 1 protein was not associated with a decrease in mRNA levels but rather was controlled by a selective and reversible block of enzyme secretion. This block in secretion was likely not due to altered protein folding as the proenzyme within A23187-treated cells remained capable of autolytic activation upon treatment with p-aminophenylmercuric acetate. In contrast, 92-kDa gelatinase mRNA and secreted protein levels were coordinately reduced by A23187. Keratin 14 expression, a basal keratinocyte marker, was reduced with PMA treatment, but A23187 did not affect keratin 14 expression. In human wounds, both basal and suprabasal keratinocytes at the migrating front of epidermis stained for keratin 14, but only the basal cells expressed collagenase 1. These data suggest that collagenase 1 production is not necessarily linked with expression of basal cell markers and that modulation of intracellular calcium levels can block secretion of collagenase 1 by keratinocytes which have moved away from the stratum basalis and from their natural substrate.

2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Andreas Bayer ◽  
Mersedeh Tohidnezhad ◽  
Justus Lammel ◽  
Sebastian Lippross ◽  
Peter Behrendt ◽  
...  

Autologous thrombocyte concentrate lysates, for example, platelet-released growth factors, (PRGFs) or their clinically related formulations (e.g., Vivostat PRF®) came recently into the physicians’ focus as they revealed promising effects in regenerative and reparative medicine such as the support of healing of chronic wounds. To elucidate the underlying mechanisms, we analyzed the influence of PRGF and Vivostat PRF on human keratinocyte differentiation in vitro and on epidermal differentiation status of skin wounds in vivo. Therefore, we investigated the expression of early (keratin 1 and keratin 10) and late (transglutaminase-1 and involucrin) differentiation markers. PRGF treatment of primary human keratinocytes decreased keratin 1 and keratin 10 gene expression but induced involucrin and transglutaminase-1 gene expression in an epidermal growth factor receptor- (EGFR-) dependent manner. In concordance with these results, microscopic analyses revealed that PRGF-treated human keratinocytes displayed morphological features typical of keratinocytes undergoing terminal differentiation. In vivo treatment of artificial human wounds with Vivostat PRF revealed a significant induction of involucrin and transglutaminase-1 gene expression. Together, our results indicate that PRGF and Vivostat PRF induce terminal differentiation of primary human keratinocytes. This potential mechanism may contribute to the observed beneficial effects in the treatment of hard-to-heal wounds with autologous thrombocyte concentrate lysates in vivo.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Chengwu Xiao ◽  
Wei Zhang ◽  
Meimian Hua ◽  
Huan Chen ◽  
Bin Yang ◽  
...  

Abstract Background The tripartite motif (TRIM) family proteins exhibit oncogenic roles in various cancers. The roles of TRIM27, a member of the TRIM super family, in renal cell carcinoma (RCC) remained unexplored. In the current study, we aimed to investigate the clinical impact and roles of TRIM27 in the development of RCC. Methods The mRNA levels of TRIM27 and Kaplan–Meier survival of RCC were analyzed from The Cancer Genome Atlas database. Real-time PCR and Western blotting were used to measure the mRNA and protein levels of TRIM27 both in vivo and in vitro. siRNA and TRIM27 were exogenously overexpressed in RCC cell lines to manipulate TRIM27 expression. Results We discovered that TRIM27 was elevated in RCC patients, and the expression of TRIM27 was closely correlated with poor prognosis. The loss of function and gain of function results illustrated that TRIM27 promotes cell proliferation and inhibits apoptosis in RCC cell lines. Furthermore, TRIM27 expression was positively associated with NF-κB expression in patients with RCC. Blocking the activity of NF-κB attenuated the TRIM27-mediated enhancement of proliferation and inhibition of apoptosis. TRIM27 directly interacted with Iκbα, an inhibitor of NF-κB, to promote its ubiquitination, and the inhibitory effects of TRIM27 on Iκbα led to NF-κB activation. Conclusions Our results suggest that TRIM27 exhibits an oncogenic role in RCC by regulating NF-κB signaling. TRIM27 serves as a specific prognostic indicator for RCC, and strategies targeting the suppression of TRIM27 function may shed light on future therapeutic approaches.


2013 ◽  
Vol 451 (3) ◽  
pp. 453-461 ◽  
Author(s):  
Claudia C. S. Chini ◽  
Carlos Escande ◽  
Veronica Nin ◽  
Eduardo N. Chini

The nuclear receptor Rev-erbα has been implicated as a major regulator of the circadian clock and integrates circadian rhythm and metabolism. Rev-erbα controls circadian oscillations of several clock genes and Rev-erbα protein degradation is important for maintenance of the circadian oscillations and also for adipocyte differentiation. Elucidating the mechanisms that regulate Rev-erbα stability is essential for our understanding of these processes. In the present paper, we report that the protein DBC1 (Deleted in Breast Cancer 1) is a novel regulator of Rev-erbα. Rev-erbα and DBC1 interact in cells and in vivo, and DBC1 modulates the Rev-erbα repressor function. Depletion of DBC1 by siRNA (small interfering RNA) in cells or in DBC1-KO (knockout) mice produced a marked decrease in Rev-erbα protein levels, but not in mRNA levels. In contrast, DBC1 overexpression significantly enhanced Rev-erbα protein stability by preventing its ubiquitination and degradation. The regulation of Rev-erbα protein levels and function by DBC1 depends on both the N-terminal and C-terminal domains of DBC1. More importantly, in cells depleted of DBC1, there was a dramatic decrease in circadian oscillations of both Rev-erbα and BMAL1. In summary, our data identify DBC1 as an important regulator of the circadian receptor Rev-erbα and proposes that Rev-erbα could be involved in mediating some of the physiological effects of DBC1.


Reproduction ◽  
2010 ◽  
Vol 139 (4) ◽  
pp. 759-769 ◽  
Author(s):  
F P Yuan ◽  
X Li ◽  
J Lin ◽  
C Schwabe ◽  
E E Büllesbach ◽  
...  

LH receptor knockout (LhrKO) male mice exhibit a bilateral cryptorchidism resulting from a developmental defect in the gubernaculum during the inguinoscrotal phase of testis descent, which is corrected by testosterone replacement therapy (TRT).In vivoandin vitroexperiments were conducted to investigate the roles of the androgen receptor (AR) and RXFP2 signals in regulation of gubernacular development inLhrKO animals. This study demonstrated that AR and RXFP2 proteins were expressed in the gubernaculum during the entire postnatal period. TRT normalized gubernacular RXFP2 protein levels inLhrKO mice. Organ and primary cell cultures of gubernacula showed that 5α-dihydrotestosterone (DHT) upregulated the expression ofRxfp2which was abolished by the addition of an AR antagonist, flutamide. A single s.c. testosterone injection also led to a significant increase inRxfp2mRNA levels in a time-dependent fashion inLhrKO animals. DHT, natural and synthetic insulin-like peptide 3 (INSL3), or relaxin alone did not affect proliferation of gubernacular mesenchymal cells, while co-treatments of DHT with either INSL3 or relaxin resulted in an increase in cell proliferation, and they also enhanced the mesenchymal cell differentiation toward the myogenic pathway, which included a decrease in a mesenchymal cell marker, CD44 and the expression of troponin. These effects were attenuated by the addition of flutamide, siRNA-mediatedRxfp2knockdown, or by an INSL3 antagonist. Co-administration of an INSL3 antagonist curtailed TRT-induced inguinoscrotal testis descent inLhrKO mice. Our findings indicate that the RXFP2 signaling pathway plays an important role in mediating androgen action to stimulate gubernaculum development during inguinoscrotal testis descent.


1996 ◽  
Vol 109 (1) ◽  
pp. 199-207 ◽  
Author(s):  
K.Y. Nishimura ◽  
R.R. Isseroff ◽  
R. Nuccitelli

Previous measurements of the lateral electric fields near skin wounds in guinea pigs have detected DC fields between 100–200 mV/mm near the edge of the wound. We have studied the translocation response of motile primary human keratinocytes migrating on a collagen substrate while exposed to similar physiological DC electric fields. We find that keratinocytes migrate randomly on collagen in fields of 5 mV/mm or less, but in larger fields they migrate towards the negative pole of the field, exhibiting galvanotaxis. Since these cells have an average cell length of 50 microns, this implies that they are able to detect a voltage gradient as low as 0.5 mV along their length. This cath-odally-directed movement exhibits increased directedness with increasing field strengths between 10 and 100 mV/mm. We observe a maximally directed response at 100 mV/mm with half of the cells responding to the field within 14 minutes. The average speed of migration tended to be greater in fields above 50 mV/mm than in smaller fields. We conclude that human keratinocytes migrate towards the negative pole in DC electric fields that are of the same magnitude as measured in vivo near wounds in mammalian skin.


2001 ◽  
Vol 114 (10) ◽  
pp. 1913-1923 ◽  
Author(s):  
J. Hildesheim ◽  
U. Kuhn ◽  
C.L. Yee ◽  
R.A. Foster ◽  
K.B. Yancey ◽  
...  

Skn-1a is a POU transcription factor that is primarily expressed in the epidermis and is known to modulate the expression of several genes associated with keratinocyte differentiation. However, the formation of a stratified epidermis requires a carefully controlled balance between keratinocyte proliferation and differentiation, and a role for Skn-1a in this process has not been previously demonstrated. Here, our results show, surprisingly, that human Skn-1a contributes to epidermal stratification by primarily promoting keratinocyte proliferation and secondarily by enhancing the subsequent keratinocyte differentiation. In organotypic raft cultures of both primary human keratinocytes and immortalized HaCaT keratinocytes, human Skn-1a expression is associated with increased keratinocyte proliferation and re-epithelialization of the dermal substrates, resulting in increased numbers of keratinocytes available for the differentiation process. In these same raft cultures, human Skn-1a expression enhances the phenotypic changes of keratinocyte differentiation and the upregulated expression of keratinocyte differentiation genes. Conversely, expression of a dominant negative human Skn-1a transcription factor lacking the C-terminal transactivation domain blocks keratinocytes from proliferating and stratifying. Keratinocyte stratification is dependent on a precise balance between keratinocyte proliferation and differentiation, and our results suggest that human Skn-1a has an important role in maintaining epidermal homeostasis by promoting keratinocyte proliferation.


2020 ◽  
Vol 117 (36) ◽  
pp. 22173-22182
Author(s):  
Matteo Vietri Rudan ◽  
Ajay Mishra ◽  
Christian Klose ◽  
Ulrike S. Eggert ◽  
Fiona M. Watt

While the lipids of the outer layers of mammalian epidermis and their contribution to barrier formation have been extensively described, the role of individual lipid species in the onset of keratinocyte differentiation remains unknown. A lipidomic analysis of primary human keratinocytes revealed accumulation of numerous lipid species during suspension-induced differentiation. A small interfering RNA screen of 258 lipid-modifying enzymes identified two genes that on knockdown induced epidermal differentiation:ELOVL1, encoding elongation of very long-chain fatty acids protein 1, andSLC27A1, encoding fatty acid transport protein 1. By intersecting lipidomic datasets from suspension-induced differentiation and knockdown keratinocytes, we pinpointed candidate bioactive lipid subspecies as differentiation regulators. Several of these—ceramides and glucosylceramides—induced differentiation when added to primary keratinocytes in culture. Our results reveal the potential of lipid subspecies to regulate exit from the epidermal stem cell compartment.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Xiafang Wu ◽  
Ru Sun ◽  
Huihui Wang ◽  
Bei Yang ◽  
Fang Wang ◽  
...  

Chronic exposure to arsenic induces a variety of cancers, particularly in the skin. Autophagy is a highly conserved process which plays a dual role in tumorigenesis. In the present study, we found that chronic exposure to an environmentally relevant dose of arsenite induced malignant transformation of human keratinocytes (HaCaT) with dysregulated autophagy as indicated by an increased number of autophagosomes, activation of mTORC1 pathway, and elevated protein levels of p62 and LC3II. Meanwhile, arsenite-transformed cells showed lower intracellular levels of reactive oxygen species compared with control. Silencing p62 ameliorated elevation in mRNA levels of NRF2 downstream genes (AKR1C1 and NQO1) and malignant phenotypes (acquired invasiveness and anchor-independent growth) induced by chronic arsenite exposure. On the other hand, silencing NRF2 abrogated the increase in mRNA and protein levels of p62 and malignant phenotypes induced by arsenite. In response to acute arsenite exposure, impaired autophagic flux with an increase in p62 protein level and interrupted autophagosome-lysosome fusion was observed. The increase in p62 protein levels in response to arsenite was not completely dependent on NRF2 activation and at least partially attributed to protein degradation. Our data indicate that accumulation of p62 by impaired autophagic flux is involved in the activation of NRF2 and contributes to skin tumorigenesis due to chronic arsenite exposure.


1986 ◽  
Vol 103 (1) ◽  
pp. 49-62 ◽  
Author(s):  
A Schermer ◽  
S Galvin ◽  
T T Sun

In this paper we present keratin expression data that lend strong support to a model of corneal epithelial maturation in which the stem cells are located in the limbus, the transitional zone between cornea and conjunctiva. Using a new monoclonal antibody, AE5, which is highly specific for a 64,000-mol-wt corneal keratin, designated RK3, we demonstrate that this keratin is localized in all cell layers of rabbit corneal epithelium, but only in the suprabasal layers of the limbal epithelium. Analysis of cultured corneal keratinocytes showed that they express sequentially three major keratin pairs. Early cultures consisting of a monolayer of "basal" cells express mainly the 50/58K keratins, exponentially growing cells synthesize additional 48/56K keratins, and postconfluent, heavily stratified cultures begin to express the 55/64K corneal keratins. Cell separation experiments showed that basal cells isolated from postconfluent cultures contain predominantly the 50/58K pair, whereas suprabasal cells contain additional 55/64K and 48/56K pairs. Basal cells of the older, postconfluent cultures, however, can become AE5 positive, indicating that suprabasal location is not a prerequisite for the expression of the 64K keratin. Taken together, these results suggest that the acidic 55K and basic 64K keratins represent markers for an advanced stage of corneal epithelial differentiation. The fact that epithelial basal cells of central cornea but not those of the limbus possess the 64K keratin therefore indicates that corneal basal cells are in a more differentiated state than limbal basal cells. These findings, coupled with the known centripetal migration of corneal epithelial cells, strongly suggest that corneal epithelial stem cells are located in the limbus, and that corneal basal cells correspond to "transient amplifying cells" in the scheme of "stem cells----transient amplifying cells----terminally differentiated cells."


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4341-4341
Author(s):  
Johann Greil ◽  
Andreas Gessner ◽  
Maria Thomas ◽  
Olaf Heidenreich

Abstract The chromosomal translocation t(4;11) marks a therapy-resistant infant leukemia with very poor prognosis. It results in the expression of two fusion-proteins, MLL-AF4 and AF4-MLL. We addressed the role of MLL-AF4 in t(4;11) positive SEM cells by siRNA-mediated suppression. Depletion of MLL-AF4 results in induction of apoptosis, inhibition of proliferation, decrease in colony formation and diminished leukemic engraftment in vivo. Currently, we are analyzing global changes in protein expression. For that, we compare the proteome of MLL-AF4 depleted SEM cells with those of control cells. The analysis is performed by 2D-gelelectrophoresis followed by mass spectrometry identification and immunoblot validation of differentially expressed spots. One of these spots was identified as Aldolase A. Comparison of MLL-AF4 depleted SEM cells with control cells showed neither change in mRNA levels nor in absolute protein levels of Aldolase A. Two-dimensional western blotting, however, revealed differences in the protein pattern, suggesting changes in Aldolase A modifications upon MLL-AF4 depletion. These analyses will provide us with a better insight into the effects of siRNA-mediated MLL-AF4 knockdown on the proteome, and may enable us to identify new targets for molecular therapeutic approaches.


Sign in / Sign up

Export Citation Format

Share Document