scholarly journals Dependence of Endoplasmic Reticulum-associated Degradation on the Peptide Binding Domain and Concentration of BiP

2003 ◽  
Vol 14 (8) ◽  
pp. 3437-3448 ◽  
Author(s):  
Mehdi Kabani ◽  
Stephanie S. Kelley ◽  
Michael W. Morrow ◽  
Diana L. Montgomery ◽  
Renuka Sivendran ◽  
...  

ER-associated degradation (ERAD) removes defective and mis-folded proteins from the eukaryotic secretory pathway, but mutations in the ER lumenal Hsp70, BiP/Kar2p, compromise ERAD efficiency in yeast. Because attenuation of ERAD activates the UPR, we screened for kar2 mutants in which the unfolded protein response (UPR) was induced in order to better define how BiP facilitates ERAD. Among the kar2 mutants isolated we identified the ERAD-specific kar2-1 allele (Brodsky et al. J. Biol. Chem. 274, 3453–3460). The kar2-1 mutation resides in the peptide-binding domain of BiP and decreases BiP's affinity for a peptide substrate. Peptide-stimulated ATPase activity was also reduced, suggesting that the interdomain coupling in Kar2-1p is partially compromised. In contrast, Hsp40 cochaperone-activation of Kar2-1p's ATPase activity was unaffected. Consistent with UPR induction in kar2-1 yeast, an ERAD substrate aggregated in microsomes prepared from this strain but not from wild-type yeast. Overexpression of wild-type BiP increased substrate solubility in microsomes obtained from the mutant, but the ERAD defect was exacerbated, suggesting that simply retaining ERAD substrates in a soluble, retro-translocation-competent conformation is insufficient to support polypeptide transit to the cytoplasm.

2016 ◽  
Vol 27 (8) ◽  
pp. 1220-1234 ◽  
Author(s):  
Charles DeRossi ◽  
Ana Vacaru ◽  
Ruhina Rafiq ◽  
Ayca Cinaroglu ◽  
Dru Imrie ◽  
...  

Activation of the unfolded protein response (UPR) can be either adaptive or pathological. We term the pathological UPR that causes fatty liver disease a “stressed UPR.” Here we investigate the mechanism of stressed UPR activation in zebrafish bearing a mutation in the trappc11 gene, which encodes a component of the transport protein particle (TRAPP) complex. trappc11 mutants are characterized by secretory pathway defects, reflecting disruption of the TRAPP complex. In addition, we uncover a defect in protein glycosylation in trappc11 mutants that is associated with reduced levels of lipid-linked oligosaccharides (LLOs) and compensatory up-regulation of genes in the terpenoid biosynthetic pathway that produces the LLO anchor dolichol. Treating wild-type larvae with terpenoid or LLO synthesis inhibitors phenocopies the stressed UPR seen in trappc11 mutants and is synthetically lethal with trappc11 mutation. We propose that reduced LLO level causing hypoglycosylation is a mechanism of stressed UPR induction in trappc11 mutants. Of importance, in human cells, depletion of TRAPPC11, but not other TRAPP components, causes protein hypoglycosylation, and lipid droplets accumulate in fibroblasts from patients with the TRAPPC11 mutation. These data point to a previously unanticipated and conserved role for TRAPPC11 in LLO biosynthesis and protein glycosylation in addition to its established function in vesicle trafficking.


2002 ◽  
Vol 13 (11) ◽  
pp. 3955-3966 ◽  
Author(s):  
Shilpa Vashist ◽  
Christian G. Frank ◽  
Claude A. Jakob ◽  
Davis T.W. Ng

Membrane transporter proteins are essential for the maintenance of cellular ion homeostasis. In the secretory pathway, the P-type ATPase family of transporters is found in every compartment and the plasma membrane. Here, we report the identification of COD1/SPF1(control of HMG-CoA reductase degradation/SPF1) through genetic strategies intended to uncover genes involved in protein maturation and endoplasmic reticulum (ER)-associated degradation (ERAD), a quality control pathway that rids misfolded proteins. Cod1p is a putative ER P-type ATPase whose expression is regulated by the unfolded protein response, a stress-inducible pathway used to monitor and maintain ER homeostasis. COD1 mutants activate the unfolded protein response and are defective in a variety of functions apart from ERAD, which further support a homeostatic role.COD1 mutants display phenotypes similar to strains lacking Pmr1p, a Ca2+/Mn2+pump that resides in the medial-Golgi. Because of its localization, the previously reported role of PMR1 in ERAD was somewhat enigmatic. A clue to their respective roles came from observations that the two genes are not generally required for ERAD. We show that the specificity is rooted in a requirement for both genes in protein-linked oligosaccharide trimming, a requisite ER modification in the degradation of some misfolded glycoproteins. Furthermore, Cod1p, like Pmr1p, is also needed for the outer chain modification of carbohydrates in the Golgi apparatus despite its ER localization. In strains deleted of both genes, these activities are nearly abolished. The presence of either protein alone, however, can support partial function for both compartments. Taken together, our results reveal an interdependent relationship between two P-type ATPases to maintain homeostasis of the organelles where they reside.


1997 ◽  
Vol 8 (9) ◽  
pp. 1805-1814 ◽  
Author(s):  
J S Cox ◽  
R E Chapman ◽  
P Walter

The endoplasmic reticulum (ER) is a multifunctional organelle responsible for production of both lumenal and membrane components of secretory pathway compartments. Secretory proteins are folded, processed, and sorted in the ER lumen and lipid synthesis occurs on the ER membrane itself. In the yeast Saccharomyces cerevisiae, synthesis of ER components is highly regulated: the ER-resident proteins by the unfolded protein response and membrane lipid synthesis by the inositol response. We demonstrate that these two responses are intimately linked, forming different branches of the same pathway. Furthermore, we present evidence indicating that this coordinate regulation plays a role in ER biogenesis.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3782-3782
Author(s):  
Jie Bai ◽  
Sho Kubota ◽  
Takako Yokomizo ◽  
Akinori Kanai ◽  
Yuqi Sun ◽  
...  

High Mobility Group AT-hook 2 (HMGA2) is a chromatin modifier and its overexpression has been found in a subset of patients with myelodysplastic syndrome (MDS). The high level of HMGA2 expression appears to predict poor prognosis in various tumors; however, it remains unclear how HMGA2 dysregulates expression of target genes to facilitate the transformation. To elucidate the mechanisms by which the overexpression of Hmga2 promotes the development of MDS, we generated an Hmga2-expressing Tet2-deficient (Hmga2-Tet2Δ/Δ) mouse model showing the progressive phenotype of MDS. We found that Hmga2-Tet2Δ/Δ mice had neutropenia and anemia, but variable platelet counts, accompanied by elevated frequencies of mutant cells in myeloid cells. Hmga2-Tet2Δ/Δ mice showed a similar median survival to Tet2Δ/Δ mice (274 days vs 290 days), but shorter survival than Hmga2-Tet2wt/wt mice (274 days vs undetermined). Moribund Hmga2-Tet2Δ/Δ mice showed progressive leukopenia and anemia, accompanied by the emergence of dysplastic neutrophils, myeloblasts and anisocytosis in the PB and BM and dysplastic megakaryocytes in the BM. Hmga2-Tet2Δ/Δ mice had mildly increased spleen weights, and expanded myeloid cells and HSPCs in the spleen without the deposition of fibrosis. During a 12-month observation, we found that Hmga2-Tet2Δ/Δ mice developed lethal MDS/MPN overlap disease (47%), MDS (33%), MPN (13%), and AML (7%), while 6 out of 11 Tet2Δ/Δ mice developed MPN (55%). Hmga2-Tet2wt/wt mice subsequently showed similar blood counts in PB and died without the expansion of leukemic or dysplastic blood cells. Therefore, Hmga2 overexpression did not transform wild-type HSCs but promoted the development of MDS in the absence of Tet2 in vivo. In order to elucidate the molecular mechanisms underlying the transformation of Hmga2-Tet2Δ/Δ cells, we initially performed gene expression profiling by a RNA sequencing analysis in LSK HSPCs isolated from WT, Hmga2-Tet2wt/wt, Tet2Δ/Δ, and Hmga2-Tet2Δ/Δ mice at a pre-disease stage and those isolated from two Hmga2-Tet2Δ/Δ MDS/MPN and AML mice. Hmga2-Tet2Δ/Δ leukemic cells were placed closer to one out of two Hmga2-Tet2Δ/Δ cells at the pre-disease stage, but clearly apart from the other genotype cells, indicating that Hmga2 overexpression and Tet2 loss result in the accumulation of alterations in the transcriptional program during the development of MDS.In order to clarify the mechanisms by which the overexpression of Hmga2 alters the transcriptional program in Tet2-deficient cells, we performed the ChIP-sequencing of FLAG-tagged Hmga2 in bone marrow progenitor cells isolated from WT, Hmga2-Tet2wt/wt, and Hmga2-Tet2Δ/Δ mice. The numbers of Hmga2-binding peaks were markedly lower in Tet2-deficient cells than in Hmga2-Tet2wt/wt cells (2227 peaks versus 11500 peaks). Furthermore, annotated genes adjacent to Hmga2-binding sites partially overlapped in both genotype cells, whereas 2965 out of 3843 genes identified in Tet2 wild-type cells lost the binding peaks of Hmga2 upon the deletion of Tet2. Based on the DNA-binding capacity of Hmga2, the loss of Tet2 remodeled the binding sites of Hmga2 via change in DNA methylation in Hmga2-binding flanking regions, which were not observed in the presence of Tet2, leading to significant enrichments in genes involved in cell-to-cell adhesion and cell morphogenesis in Hmga2-Tet2Δ/Δ cells. Furthermore, we found that the overexpression of Hmga2 and loss of Tet2 resulted in the activation of oncogenic pathways (e.g. TGF-b, TNF-a), but suppressed the expression of genes in the unfolded protein response. Notably, the inhibition of bile acid metabolism to reactivate the unfolded protein response markedly attenuated the proliferation of Hmga2-Tet2Δ/Δ cells. These combinatory effects on the transcriptional program and cellular functions were not redundant to those in either single mutant cell, supporting Hmga2 being a proto-oncogene because its overexpression alone was not sufficient to develop MDS in vivo. Thus, Hmga2 overexpression exerts synergistic, but also gain-of-function effects with the loss of Tet2 to target these key biological pathways and promotes the transformation of Tet2-deficient stem cells. This study also provides a new rationale for targeting the unfolded protein response in MDS cells expressing HMGA2. Disclosures No relevant conflicts of interest to declare.


2017 ◽  
Vol 216 (8) ◽  
pp. 2295-2304 ◽  
Author(s):  
Norfadilah Hamdan ◽  
Paraskevi Kritsiligkou ◽  
Chris M. Grant

Disturbances in endoplasmic reticulum (ER) homeostasis create a condition termed ER stress. This activates the unfolded protein response (UPR), which alters the expression of many genes involved in ER quality control. We show here that ER stress causes the aggregation of proteins, most of which are not ER or secretory pathway proteins. Proteomic analysis of the aggregated proteins revealed enrichment for intrinsically aggregation-prone proteins rather than proteins which are affected in a stress-specific manner. Aggregation does not arise because of overwhelming proteasome-mediated degradation but because of a general disruption of cellular protein homeostasis. We further show that overexpression of certain chaperones abrogates protein aggregation and protects a UPR mutant against ER stress conditions. The onset of ER stress is known to correlate with various disease processes, and our data indicate that widespread amorphous and amyloid protein aggregation is an unanticipated outcome of such stress.


2002 ◽  
Vol 156 (6) ◽  
pp. 993-1001 ◽  
Author(s):  
Maureen Hyde ◽  
Laura Block-Alper ◽  
Jahaira Felix ◽  
Paul Webster ◽  
David I. Meyer

The overexpression of certain membrane proteins is accompanied by a striking proliferation of intracellular membranes. One of the best characterized inducers of membrane proliferation is the 180-kD mammalian ribosome receptor (p180), whose expression in yeast results in increases in levels of mRNAs encoding proteins that function in the secretory pathway, and an elevation in the cell's ability to secrete proteins. In this study we demonstrate that neither the unfolded protein response nor increased transcription accounts for membrane proliferation or the observed increase in secretory pathway mRNAs. Rather, p180-induced up-regulation of certain secretory pathway transcripts is due to a p180-mediated increase in the longevity of these mRNA species, as determined by measurements of transcriptional activity and specific mRNA turnover. Moreover, we show that the longevity of mRNA in general is substantially promoted through the process of its targeting to the membrane of the endoplasmic reticulum. With respect to the terminal differentiation of secretory tissues, results from this model system provide insights into how the expression of a single protein, p180, could result in substantial morphological and functional changes.


2017 ◽  
Vol 22 (7) ◽  
pp. 787-800 ◽  
Author(s):  
Dimitrios Doultsinos ◽  
Tony Avril ◽  
Stéphanie Lhomond ◽  
Nicolas Dejeans ◽  
Philippe Guédat ◽  
...  

The unfolded protein response (UPR) is an integrated, adaptive biochemical process that is inextricably linked with cell homeostasis and paramount to maintenance of normal physiological function. Prolonged accumulation of improperly folded proteins in the endoplasmic reticulum (ER) leads to stress. This is the driving stimulus behind the UPR. As such, prolonged ER stress can push the UPR past beneficial functions such as reduced protein production and increased folding and clearance to apoptotic signaling. The UPR is thus contributory to the commencement, maintenance, and exacerbation of a multitude of disease states, making it an attractive global target to tackle conditions sorely in need of novel therapeutic intervention. The accumulation of information of screening tools, readily available therapies, and potential pathways to drug development is the cornerstone of informed clinical research and clinical trial design. Here, we review the UPR’s involvement in health and disease and, beyond providing an in-depth description of the molecules found to target the three UPR arms, we compile all the tools available to screen for and develop novel therapeutic agents that modulate the UPR with the scope of future disease intervention.


2020 ◽  
Vol 6 (48) ◽  
pp. eabd3139
Author(s):  
Daniel Prins ◽  
Hyun Jung Park ◽  
Sam Watcham ◽  
Juan Li ◽  
Michele Vacca ◽  
...  

Frameshift mutations in CALR (calreticulin) are associated with essential thrombocythemia (ET), but the stages at and mechanisms by which mutant CALR drives transformation remain incompletely defined. Here, we use single-cell approaches to examine the hematopoietic stem/progenitor cell landscape in a mouse model of mutant CALR-driven ET. We identify a trajectory linking hematopoietic stem cells (HSCs) with megakaryocytes and prospectively identify a previously unknown intermediate population that is overrepresented in the disease state. We also show that mutant CALR drives transformation primarily from the earliest stem cell compartment, with some contribution from megakaryocyte progenitors. Last, relative to wild-type HSCs, mutant CALR HSCs show increases in JAK-STAT signaling, the unfolded protein response, cell cycle, and a previously undescribed up-regulation of cholesterol biosynthesis. Overall, we have identified a novel megakaryocyte-biased cell population that is increased in a mouse model of ET and described transcriptomic changes linking CALR mutations to increased HSC proliferation and megakaryopoiesis.


2012 ◽  
Vol 196 (6) ◽  
pp. 689-698 ◽  
Author(s):  
Andrew E. Byrd ◽  
Ileana V. Aragon ◽  
Joseph W. Brewer

Stress in the endoplasmic reticulum (ER) triggers the unfolded protein response (UPR), a multifaceted signaling system coordinating translational control and gene transcription to promote cellular adaptation and survival. Microribonucleic acids (RNAs; miRNAs), single-stranded RNAs that typically function as posttranscriptional modulators of gene activity, have been shown to inhibit translation of certain secretory pathway proteins during the UPR. However, it remains unclear whether miRNAs regulate UPR signaling effectors directly. In this paper, we report that a star strand miRNA, miR-30c-2* (recently designated miR-30c-2-3p), is induced by the protein kinase RNA activated–like ER kinase (PERK) pathway of the UPR and governs expression of XBP1 (X-box binding protein 1), a key transcription factor that augments secretory capacity and promotes cell survival in the adaptive UPR. These data provide the first link between an miRNA and direct regulation of the ER stress response and reveal a novel molecular mechanism by which the PERK pathway, via miR-30c-2*, influences the scale of XBP1-mediated gene expression and cell fate in the UPR.


Sign in / Sign up

Export Citation Format

Share Document