scholarly journals CAR-1, a Protein That Localizes with the mRNA Decapping Component DCAP-1, Is Required for Cytokinesis and ER Organization in Caenorhabditis elegans Embryos

2006 ◽  
Vol 17 (1) ◽  
pp. 336-344 ◽  
Author(s):  
Jayne M. Squirrell ◽  
Zachary T. Eggers ◽  
Nancy Luedke ◽  
Bonnie Saari ◽  
Andrew Grimson ◽  
...  

The division of one cell into two requires the coordination of multiple components. We describe a gene, car-1, whose product may provide a link between disparate cellular processes. Inhibition of car-1 expression in Caenorhabditis elegans embryos causes late cytokinesis failures: cleavage furrows ingress but subsequently regress and the spindle midzone fails to form, even though midzone components are present. The localized accumulation of membrane that normally develops at the apex of the cleavage furrow during the final phase of cytokinesis does not occur and organization of the endoplasmic reticulum is aberrant, indicative of a disruption in membrane trafficking. The car-1 gene has homologues in a number of species, including proteins that associate with RNA binding proteins. CAR-1 localizes to P-granules (germ-line specific ribonucleoprotein particles) and discrete, developmentally regulated cytoplasmic foci. These foci also contain DCAP-1, a protein involved in decapping mRNAs. Thus, CAR-1, a protein likely to be associated with RNA metabolism, plays an essential role in the late stage of cytokinesis, suggesting a novel link between RNA, membrane trafficking and cytokinesis in the C. elegans embryo.

2021 ◽  
Vol 11 (2) ◽  
Author(s):  
Dustin Haskell ◽  
Anna Zinovyeva

Abstract MicroRNAs (miRNAs) and RNA-binding proteins (RBPs) regulate gene expression at the post-transcriptional level, but the extent to which these key regulators of gene expression coordinate their activities and the precise mechanisms of this coordination are not well understood. RBPs often have recognizable RNA binding domains that correlate with specific protein function. Recently, several RBPs containing K homology (KH) RNA binding domains were shown to work with miRNAs to regulate gene expression, raising the possibility that KH domains may be important for coordinating with miRNA pathways in gene expression regulation. To ascertain whether additional KH domain proteins functionally interact with miRNAs during Caenorhabditis elegans development, we knocked down twenty-four genes encoding KH-domain proteins in several miRNA sensitized genetic backgrounds. Here, we report that a majority of the KH domain-containing genes genetically interact with multiple miRNAs and Argonaute alg-1. Interestingly, two KH domain genes, predicted splicing factors sfa-1 and asd-2, genetically interacted with all of the miRNA mutants tested, whereas other KH domain genes showed genetic interactions only with specific miRNAs. Our domain architecture and phylogenetic relationship analyses of the C. elegans KH domain-containing proteins revealed potential groups that may share both structure and function. Collectively, we show that many C. elegans KH domain RBPs functionally interact with miRNAs, suggesting direct or indirect coordination between these two classes of post-transcriptional gene expression regulators.


2003 ◽  
Vol 358 (1436) ◽  
pp. 1359-1362 ◽  
Author(s):  
Sarah L. Crittenden ◽  
Christian R. Eckmann ◽  
Liaoteng Wang ◽  
David S. Bernstein ◽  
Marvin Wickens ◽  
...  

During the development of multicellular organisms, the processes of growth and differentiation are kept in balance to generate and maintain tissues and organs of the correct size, shape and cellular composition. We have investigated the molecular controls of growth and differentiation in the Caenorhabditis elegans germline. A single somatic cell, called the distal tip cell, promotes mitotic proliferation in the adjacent germline by GLP–1/Notch signalling. Within the germline, the decisions between mitosis and meiosis and between spermatogenesis and oogenesis are controlled by a group of conserved RNA regulators. FBF, a member of the PUF (for Pumilio and FBF) family of RNA–binding proteins, promotes mitosis by repressing gld–1 mRNA activity; the GLD–1, GLD–2, GLD–3 and NOS–3 proteins promote entry into meiosis by regulating mRNAs that remain unknown. The regulatory balance between opposing FBF and GLD activities is crucial for controlling the extent of germline proliferation. PUF proteins regulate germline stem cells in both Drosophila and C. elegans and are localized to germline stem cells of the mammalian testis. Therefore, this post–transcriptional regulatory switch may be an ancient mechanism for controlling maintenance of stem cells versus differentiation.


Author(s):  
Dylan M. Parker ◽  
Lindsay P. Winkenbach ◽  
Samuel P. Boyson ◽  
Matthew N. Saxton ◽  
Camryn Daidone ◽  
...  

AbstractCaenorhabditis elegans early embryos generate cell-specific transcriptomes despite lacking active transcription. This presents an opportunity to study mechanisms of post-transcriptional regulatory control. In seeking the mechanisms behind this patterning, we discovered that some cell-specific mRNAs accumulate non-homogenously within cells, localizing to membranes, P granules (associated with progenitor germ cells in the P lineage), and P-bodies (associated with RNA processing). Transcripts differed in their dependence on 3’UTRs and RNA Binding Proteins, suggesting diverse regulatory mechanisms. Notably, we found strong but imperfect correlations between low translational status and P granule localization within the progenitor germ lineage. By uncoupling these, we untangled a long-standing question: Are mRNAs directed to P granules for translational repression or do they accumulate there as a downstream step? We found translational repression preceded P granule localization and could occur independent of it. Further, disruption of translation was sufficient to send homogenously distributed mRNAs to P granules. Overall, we show transcripts important for germline development are directed to P granules by translational repression, and this, in turn, directs their accumulation in the progenitor germ lineage where their repression can ultimately be relieved.SummaryMaternally loaded mRNAs localize non-homogeneously within C. elegans early embryos correlating with their translational status and lineage-specific fates.


Development ◽  
1999 ◽  
Vol 126 (21) ◽  
pp. 4861-4871 ◽  
Author(s):  
K. Subramaniam ◽  
G. Seydoux

In Drosophila, the posterior determinant nanos is required for embryonic patterning and for primordial germ cell (PGC) development. We have identified three genes in Caenorhabditis elegans that contain a putative zinc-binding domain similar to the one found in nanos, and show that two of these genes function during PGC development. Like Drosophila nanos, C. elegans nos-1 and nos-2 are not generally required for PGC fate specification, but instead regulate specific aspects of PGC development. nos-2 is expressed in PGCs around the time of gastrulation from a maternal RNA associated with P granules, and is required for the efficient incorporation of PGCs into the somatic gonad. nos-1 is expressed in PGCs after gastrulation, and is required redundantly with nos-2 to prevent PGCs from dividing in starved animals and to maintain germ cell viability during larval development. In the absence of nos-1 and nos-2, germ cells cease proliferation at the end of the second larval stage, and die in a manner that is partially dependent on the apoptosis gene ced-4. Our results also indicate that putative RNA-binding proteins related to Drosophila Pumilio are required for the same PGC processes as nos-1 and nos-2. These studies demonstrate that evolutionarily distant organisms utilize conserved factors to regulate early germ cell development and survival, and that these factors include members of the nanos and pumilio gene families.


2021 ◽  
Author(s):  
Caroline A. Spike ◽  
Tatsuya Tsukamoto ◽  
David Greenstein

The ubiquitin-mediated degradation of oocyte translational regulatory proteins is a conserved feature of the oocyte-to-embryo transition (OET). In the nematode Caenorhabditis elegans, multiple translational regulatory proteins, including the TRIM-NHL RNA-binding protein LIN-41/Trim71 and the Pumilio-family RNA-binding proteins PUF-3 and PUF-11, are degraded during the OET. Degradation of each protein requires activation of the M-phase cyclin-dependent kinase CDK-1, is largely complete by the end of the first meiotic division and does not require the anaphase promoting complex (APC). However, only LIN-41 degradation requires the F-box protein SEL-10/FBW7/Cdc4p, the substrate recognition subunit of an SCF-type E3 ubiquitin ligase. This finding suggests that PUF-3 and PUF-11, which localize to LIN-41-containing ribonucleoprotein particles (RNPs), are independently degraded through the action of other factors and that the oocyte RNPs are disassembled in a concerted fashion during the OET. We develop and test the hypothesis that PUF-3 and PUF-11 are targeted for degradation by the proteasome-associated HECT-type ubiquitin ligase ETC-1/UBE3C/Hul5, which is broadly expressed in C. elegans. We find that several GFP-tagged fusion proteins that are degraded during the OET, including fusions with PUF-3, PUF-11, LIN-41, IFY-1/Securin and CYB-1/Cyclin B, are incompletely degraded when ETC-1 function is compromised. However, it is the fused GFP moiety that appears to be the critical determinant of this proteolysis defect. These findings are consistent with a conserved role for ETC-1 in promoting proteasome processivity and suggest that proteasomal processivity is an important element of the OET during which many key oocyte regulatory proteins are rapidly targeted for degradation.


2020 ◽  
Author(s):  
D Haskell ◽  
A Zinovyeva

ABSTRACTmicroRNAs (miRNAs) and RNA binding proteins (RBPs) regulate gene expression at the post-transcriptional level, but the extent to which these key regulators of gene expression coordinate and the precise mechanisms of their coordination are not well understood. RNA binding proteins often have recognizable RNA binding domains that correlate with specific protein function. Recently, several RBPs containing K Homology (KH) RNA binding domains were shown to work with miRNAs to regulate gene expression, raising the possibility that KH domains may be important for coordinating with miRNA pathways in gene expression regulation. To ascertain whether additional KH domain proteins functionally interact with miRNAs during Caenorhabditis elegans development, we knocked down twenty-four genes encoding KH-domain proteins in several miRNA sensitized genetic backgrounds. Here, we report that a majority of the KH domain-containing genes genetically interact with multiple miRNAs and Argonaute alg-1. Interestingly, two KH domain genes, predicted splicing factors sfa-1 and asd-2, genetically interacted with all of the miRNA mutants tested, while other KH domain genes exhibited functional interactions only with specific miRNAs. Our domain architecture and phylogenetic relationship analyses of the C. elegans KH domain-containing proteins revealed potential groups that may share both structure and function. Collectively, we show that many C. elegans KH domain RBPs functionally interact with miRNAs, suggesting direct or indirect coordination between these two classes of post-transcriptional gene expression regulators.


2021 ◽  
Author(s):  
Eun Seon Kim ◽  
Chang Geon Chung ◽  
Jeong Hyang Park ◽  
Byung Su Ko ◽  
Sung Soon Park ◽  
...  

Abstract RNA-binding proteins (RBPs) play essential roles in diverse cellular processes through post-transcriptional regulation of RNAs. The subcellular localization of RBPs is thus under tight control, the breakdown of which is associated with aberrant cytoplasmic accumulation of nuclear RBPs such as TDP-43 and FUS, well-known pathological markers for amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD). Here, we report in Drosophila model for ALS/FTD that nuclear accumulation of a cytoplasmic RBP, Staufen, may be a new pathological feature. We found that in Drosophila C4da neurons expressing PR36, one of the arginine-rich dipeptide repeat proteins (DPRs), Staufen accumulated in the nucleus in Importin- and RNA-dependent manner. Notably, expressing Staufen with exogenous NLS—but not with mutated endogenous NLS—potentiated PR-induced dendritic defect, suggesting that nuclear-accumulated Staufen can enhance PR toxicity. PR36 expression increased Fibrillarin staining in the nucleolus, which was enhanced by heterozygous mutation of stau (stau+/−), a gene that codes Staufen. Furthermore, knockdown of fib, which codes Fibrillarin, exacerbated retinal degeneration mediated by PR toxicity, suggesting that increased amount of Fibrillarin by stau+/− is protective. Stau+/− also reduced the amount of PR-induced nuclear-accumulated Staufen and mitigated retinal degeneration and rescued viability of flies expressing PR36. Taken together, our data show that nuclear accumulation of Staufen in neurons may be an important pathological feature contributing to the pathogenesis of ALS/FTD.


Genetics ◽  
1997 ◽  
Vol 145 (1) ◽  
pp. 111-121 ◽  
Author(s):  
Lisa C Kadyk ◽  
Eric J Lambie ◽  
Judith Kimble

The germ line is the only tissue in Caenorhabditis elegans in which a stem cell population continues to divide mitotically throughout life; hence the cell cycles of the germ line and the soma are regulated differently. Here we report the genetic and phenotypic characterization of the glp-3 gene. In animals homozygous for each of five recessive loss-of-function alleles, germ cells in both hermaphrodites and males fail to progress through mitosis and meiosis, but somatic cells appear to divide normally. Germ cells in animals grown at 15° appear by DAPI staining to be uniformly arrested at the G2/M transition with <20 germ cells per gonad on average, suggesting a checkpoint-mediated arrest. In contrast, germ cells in mutant animals grown at 25° frequently proliferate slowly during adulthood, eventually forming small germ lines with several hundred germ cells. Nevertheless, cells in these small germ lines never undergo meiosis. Double mutant analysis with mutations in other genes affecting germ cell proliferation supports the idea that glp-3 may encode a gene product that is required for the mitotic and meiotic cell cycles in the C. elegans germ line.


2021 ◽  
Author(s):  
Haider Z. Naqvi

Novel genetic enhancer screens were conducted targeting mutants involved in the guidance of axons of the DA and DB classes of motor neurons in C. elegans. These mutations are expected in genes that function in parallel to the unc-g/Netrin pathway. The screen was conducted in an unc-5(e53) genetic background and enhancers of the axon guidance defects caused by the absence of UNC-5 were identified. Three mutants were previously identified in the screen called rq1, rq2 and rq3 and two additional mutants called H2-4 and M1-3, were isolated in this study. In order to identify the gene affected by the rq1 mutation, wild-type copies of genes in the mapped rq1 mutation region were injected into the mutants to rescue the phenotypic defects. This is a strong indication that the gene of interest is a novel gene called H04D03.1. Promising results indicate that the H04D03.1 protein also works in germ-line apoptosis.


Sign in / Sign up

Export Citation Format

Share Document