scholarly journals Subnuclear Localization and Dynamics of the Pre-mRNA 3′ End Processing Factor Mammalian Cleavage Factor I 68-kDa Subunit

2007 ◽  
Vol 18 (4) ◽  
pp. 1282-1292 ◽  
Author(s):  
Stefano Cardinale ◽  
Barbara Cisterna ◽  
Paolo Bonetti ◽  
Chiara Aringhieri ◽  
Marco Biggiogera ◽  
...  

Mammalian cleavage factor I (CF Im) is an essential factor that is required for the first step in pre-mRNA 3′ end processing. Here, we characterize CF Im68 subnuclear distribution and mobility. Fluorescence microscopy reveals that in addition to paraspeckles CF Im68 accumulates in structures that partially overlap with nuclear speckles. Analysis of synchronized cells shows that CF Im68 distribution in speckles and paraspeckles varies during the cell cycle. At an ultrastructural level, CF Im68 is associated with perichromatin fibrils, the sites of active transcription, and concentrates in interchromatin granules-associated zones. We show that CFIm68 colocalizes with bromouridine, RNA polymerase II, and the splicing factor SC35. On inhibition of transcription, endogenous CF Im68 no longer associates with perichromatin fibrils, but it can still be detected in interchromatin granules-associated zones. These observations support the idea that not only splicing but also 3′ end processing occurs cotranscriptionally. Finally, fluorescence recovery after photobleaching analysis reveals that the CF Im68 fraction associated with paraspeckles moves at a rate similar to the more dispersed molecules in the nucleoplasm, demonstrating the dynamic nature of this compartment. These findings suggest that paraspeckles are a functional compartment involved in RNA metabolism in the cell nucleus.

1997 ◽  
Vol 137 (2) ◽  
pp. 263-274 ◽  
Author(s):  
Jose C. Reyes ◽  
Christian Muchardt ◽  
Moshe Yaniv

Biochemical and genetic evidence suggest that the SWI/SNF complex is involved in the remodeling of chromatin during gene activation. We have used antibodies specific against three human subunits of this complex to study its subnuclear localization, as well as its potential association with active chromatin and the nuclear skeleton. Immunofluorescence studies revealed a punctate nuclear labeling pattern that was excluded from the nucleoli and from regions of condensed chromatin. Dual labeling failed to reveal significant colocalization of BRG1 or hBRM proteins with RNA polymerase II or with nuclear speckles involved in splicing. Chromatin fractionation experiments showed that both soluble and insoluble active chromatin are enriched in the hSWI/SNF proteins as compared with bulk chromatin. hSWI/SNF proteins were also found to be associated with the nuclear matrix or nuclear scaffold, suggesting that a fraction of the hSWI/SNF complex could be involved in the chromatin organization properties associated with matrix attachment regions.


1998 ◽  
Vol 18 (4) ◽  
pp. 2406-2415 ◽  
Author(s):  
Meera Patturajan ◽  
Xiangyun Wei ◽  
Ronald Berezney ◽  
Jeffry L. Corden

ABSTRACT Yeast two-hybrid screening has led to the identification of a family of proteins that interact with the repetitive C-terminal repeat domain (CTD) of RNA polymerase II (A. Yuryev et al., Proc. Natl. Acad. Sci. USA 93:6975–6980, 1996). In addition to serine/arginine-rich SR motifs, the SCAFs (SR-like CTD-associated factors) contain discrete CTD-interacting domains. In this paper, we show that the CTD-interacting domain of SCAF8 specifically binds CTD molecules phosphorylated on serines 2 and 5 of the consensus sequence Tyr1Ser2Pro3Thr4Ser5Pro6Ser7. In addition, we demonstrate that SCAF8 associates with hyperphosphorylated but not with hypophosphorylated RNA polymerase II in vitro and in vivo. This result suggests that SCAF8 is not present in preinitiation complexes but rather associates with elongating RNA polymerase II. Immunolocalization studies show that SCAF8 is present in granular nuclear foci which correspond to sites of active transcription. We also provide evidence that SCAF8 foci are associated with the nuclear matrix. A fraction of these sites overlap with a subset of larger nuclear speckles containing phosphorylated polymerase II. Taken together, our results indicate a possible role for SCAF8 in linking transcription and pre-mRNA processing.


Author(s):  
Robert L. Ochs

By conventional electron microscopy, the formed elements of the nuclear interior include the nucleolus, chromatin, interchromatin granules, perichromatin granules, perichromatin fibrils, and various types of nuclear bodies (Figs. 1a-c). Of these structures, all have been reasonably well characterized structurally and functionally except for nuclear bodies. The most common types of nuclear bodies are simple nuclear bodies and coiled bodies (Figs. 1a,c). Since nuclear bodies are small in size (0.2-1.0 μm in diameter) and infrequent in number, they are often overlooked or simply not observed in any random thin section. The rat liver hepatocyte in Fig. 1b is a case in point. Historically, nuclear bodies are more prominent in hyperactive cells, they often occur in proximity to nucleoli (Fig. 1c), and sometimes they are observed to “bud off” from the nucleolar surface.


Author(s):  
D.L. Spector ◽  
S. Huang ◽  
S. Kaurin

We have been interested in the organization of RNA polymerase II transcription and pre-mRNA splicing within the cell nucleus. Several models have been proposed for the functional organization of RNA within the eukaryotic nucleus and for the relationship of this organization to the distribution of pre-mRNA splicing factors. One model suggests that RNAs which must be spliced are capable of recruiting splicing factors to the sites of transcription from storage and/or reassembly sites. When one examines the organization of splicing factors in the nucleus in comparison to the sites of chromatin it is clear that splicing factors are not localized in coincidence with heterochromatin (Fig. 1). Instead, they are distributed in a speckled pattern which is composed of both perichromatin fibrils and interchromatin granule clusters. The perichromatin fibrils are distributed on the periphery of heterochromatin and on the periphery of interchromatin granule clusters as well as being diffusely distributed throughout the nucleoplasm. These nuclear regions have been previously shown to represent initial sites of incorporation of 3H-uridine.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yisrael Rappaport ◽  
Hanna Achache ◽  
Roni Falk ◽  
Omer Murik ◽  
Oren Ram ◽  
...  

AbstractDuring meiosis, gene expression is silenced in aberrantly unsynapsed chromatin and in heterogametic sex chromosomes. Initiation of sex chromosome silencing is disrupted in meiocytes with sex chromosome-autosome translocations. To determine whether this is due to aberrant synapsis or loss of continuity of sex chromosomes, we engineered Caenorhabditis elegans nematodes with non-translocated, bisected X chromosomes. In early meiocytes of mutant males and hermaphrodites, X segments are enriched with euchromatin assembly markers and active RNA polymerase II staining, indicating active transcription. Analysis of RNA-seq data showed that genes from the X chromosome are upregulated in gonads of mutant worms. Contrary to previous models, which predicted that any unsynapsed chromatin is silenced during meiosis, our data indicate that unsynapsed X segments are transcribed. Therefore, our results suggest that sex chromosome chromatin has a unique character that facilitates its meiotic expression when its continuity is lost, regardless of whether or not it is synapsed.


2020 ◽  
Author(s):  
Lauren K. Williams ◽  
Douglas R. Mackay ◽  
Madeline A. Whitney ◽  
Wesley I. Sundquist ◽  
Katharine S. Ullman

AbstractThe abscission checkpoint regulates the ESCRT membrane fission machinery and thereby delays cytokinetic abscission to protect genomic integrity in response to residual mitotic errors. The checkpoint is maintained by Aurora B kinase, which phosphorylates multiple targets, including CHMP4C, a regulatory ESCRT-III subunit necessary for this checkpoint. We now report the discovery that cytoplasmic abscission checkpoint bodies (ACBs) containing phospho-Aurora B and tri-phospho-CHMP4C develop in telophase under an active checkpoint. ACBs are derived from Mitotic Interchromatin Granules (MIGs), transient mitotic structures whose components are housed in splicing-related nuclear speckles during interphase. ACB formation requires CHMP4C, and the ESCRT factor ALIX also contributes. ACB formation is conserved across cell types and under multiple circumstances that activate the checkpoint. Finally, ACBs retain a population of ALIX, and their presence correlates with delayed recruitment of ALIX to the midbody where it would normally promote abscission. Thus, a cytoplasmic mechanism helps regulate midbody machinery to delay abscission.


1984 ◽  
Vol 98 (1) ◽  
pp. 358-363 ◽  
Author(s):  
S Fakan ◽  
G Leser ◽  
T E Martin

The ultrastructural distribution of nuclear ribonucleoproteins (RNP) has been investigated by incubation of thin sections of mouse or rat liver, embedded in Lowicryl K4M or prepared by cryoultramicrotomy, with antibodies specific for RNP. The antibodies were localized by means of a protein A-colloidal gold complex. Anti-small nuclear (sn)RNP antibodies, specific for determinants of the nucleoplasmic snRNP species containing U1, U2, U4, U5, and U6 RNAs, were found associated preferentially with perichromatin fibrils, interchromatin granules, and coiled bodies. This indicates an early association of snRNP with structural constituents containing newly synthesized heterogeneous nuclear RNA. It also suggests a possible structural role of some snRNPs in nuclear architecture. Antibodies against the core proteins of heterogeneous nuclear RNP particles associate preferentially with the border regions of condensed chromatin, and in particular with perichromatin fibrils and some perichromatin granules. These results are discussed in view of recent knowledge about the possible role of nucleoplasmic RNP-containing components in the functions of the cell nucleus.


2019 ◽  
Vol 47 (12) ◽  
pp. 6299-6314 ◽  
Author(s):  
Jae-Hoon Ji ◽  
Sunwoo Min ◽  
Sunyoung Chae ◽  
Geun-Hyoung Ha ◽  
Yonghyeon Kim ◽  
...  

Abstract Histone H2AX undergoes a phosphorylation switch from pTyr142 (H2AX-pY142) to pSer139 (γH2AX) in the DNA damage response (DDR); however, the functional role of H2AX-pY142 remains elusive. Here, we report a new layer of regulation involving transcription-coupled H2AX-pY142 in the DDR. We found that constitutive H2AX-pY142 generated by Williams-Beuren syndrome transcription factor (WSTF) interacts with RNA polymerase II (RNAPII) and is associated with RNAPII-mediated active transcription in proliferating cells. Also, removal of pre-existing H2AX-pY142 by ATM-dependent EYA1/3 phosphatases disrupts this association and requires for transcriptional silencing at transcribed active damage sites. The following recovery of H2AX-pY142 via translocation of WSTF to DNA lesions facilitates transcription-coupled homologous recombination (TC-HR) in the G1 phase, whereby RAD51 loading, but not RPA32, utilizes RNAPII-dependent active RNA transcripts as donor templates. We propose that the WSTF-H2AX-RNAPII axis regulates transcription and TC-HR repair to maintain genome integrity.


2019 ◽  
pp. jcb.201904046 ◽  
Author(s):  
Jiah Kim ◽  
Neha Chivukula Venkata ◽  
Gabriela Andrea Hernandez Gonzalez ◽  
Nimish Khanna ◽  
Andrew S. Belmont

Many active genes reproducibly position near nuclear speckles, but the functional significance of this positioning is unknown. Here we show that HSPA1B BAC transgenes and endogenous Hsp70 genes turn on 2–4 min after heat shock (HS), irrespective of their distance to speckles. However, both total HSPA1B mRNA counts and nascent transcript levels measured adjacent to the transgene are approximately twofold higher for speckle-associated alleles 15 min after HS. Nascent transcript level fold-increases for speckle-associated alleles are 12–56-fold and 3–7-fold higher 1–2 h after HS for HSPA1B transgenes and endogenous genes, respectively. Severalfold higher nascent transcript levels for several Hsp70 flanking genes also correlate with speckle association at 37°C. Live-cell imaging reveals that HSPA1B nascent transcript levels increase/decrease with speckle association/disassociation. Initial investigation reveals that increased nascent transcript levels accompanying speckle association correlate with reduced exosome RNA degradation and larger Ser2p CTD-modified RNA polymerase II foci. Our results demonstrate stochastic gene expression dependent on positioning relative to a liquid-droplet nuclear compartment through “gene expression amplification.”


Sign in / Sign up

Export Citation Format

Share Document