scholarly journals A Novel Cas Family Member, HEPL, Regulates FAK and Cell Spreading

2008 ◽  
Vol 19 (4) ◽  
pp. 1627-1636 ◽  
Author(s):  
Mahendra K. Singh ◽  
Disha Dadke ◽  
Emmanuelle Nicolas ◽  
Ilya G. Serebriiskii ◽  
Sinoula Apostolou ◽  
...  

For over a decade, p130Cas/BCAR1, HEF1/NEDD9/Cas-L, and Efs/Sin have defined the Cas (Crk-associated substrate) scaffolding protein family. Cas proteins mediate integrin-dependent signals at focal adhesions, regulating cell invasion and survival; at least one family member, HEF1, regulates mitosis. We here report a previously undescribed novel branch of the Cas protein family, designated HEPL (for HEF1-Efs-p130Cas-like). The HEPL branch is evolutionarily conserved through jawed vertebrates, and HEPL is found in some species lacking other members of the Cas family. The human HEPL mRNA and protein are selectively expressed in specific primary tissues and cancer cell lines, and HEPL maintains Cas family function in localization to focal adhesions, as well as regulation of FAK activity, focal adhesion integrity, and cell spreading. It has recently been demonstrated that upregulation of HEF1 expression marks and induces metastasis, whereas high endogenous levels of p130Cas are associated with poor prognosis in breast cancer, emphasizing the clinical relevance of Cas proteins. Better understanding of the complete protein family should help inform prediction of cancer incidence and prognosis.

Author(s):  
Frans van Roy ◽  
Volker Nimmrich ◽  
Anton Bespalov ◽  
Achim Möller ◽  
Hiromitsu Hara ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 388
Author(s):  
Brice Chanez ◽  
Kevin Ostacolo ◽  
Ali Badache ◽  
Sylvie Thuault

Regulation of microtubule dynamics by plus-end tracking proteins (+TIPs) plays an essential role in cancer cell migration. However, the role of +TIPs in cancer cell invasion has been poorly addressed. Invadopodia, actin-rich protrusions specialized in extracellular matrix degradation, are essential for cancer cell invasion and metastasis, the leading cause of death in breast cancer. We, therefore, investigated the role of the End Binding protein, EB1, a major hub of the +TIP network, in invadopodia functions. EB1 silencing increased matrix degradation by breast cancer cells. This was recapitulated by depletion of two additional +TIPs and EB1 partners, APC and ACF7, but not by the knockdown of other +TIPs, such as CLASP1/2 or CLIP170. The knockdown of Focal Adhesion Kinase (FAK) was previously proposed to similarly promote invadopodia formation as a consequence of a switch of the Src kinase from focal adhesions to invadopodia. Interestingly, EB1-, APC-, or ACF7-depleted cells had decreased expression/activation of FAK. Remarkably, overexpression of wild type FAK, but not of FAK mutated to prevent Src recruitment, prevented the increased degradative activity induced by EB1 depletion. Overall, we propose that EB1 restricts invadopodia formation through the control of FAK and, consequently, the spatial regulation of Src activity.


2005 ◽  
Vol 303 (2) ◽  
pp. 218-228 ◽  
Author(s):  
Donna M. Peters ◽  
Kathleen Herbert ◽  
Brenda Biddick ◽  
Jennifer A. Peterson

2001 ◽  
Vol 102 (1-2) ◽  
pp. 223-226 ◽  
Author(s):  
Devyn M. Smith ◽  
Lisa A. Collins-Racie ◽  
Valeria A. Marigo ◽  
Drucilla J. Roberts ◽  
Nicole M. Davis ◽  
...  

2000 ◽  
Vol 113 (2) ◽  
pp. 315-324 ◽  
Author(s):  
P.C. Baciu ◽  
S. Saoncella ◽  
S.H. Lee ◽  
F. Denhez ◽  
D. Leuthardt ◽  
...  

Syndecan-4 is a cell surface heparan sulfate proteoglycan which, in cooperation with integrins, transduces signals for the assembly of focal adhesions and actin stress fibers in cells plated on fibronectin. The regulation of these cellular events is proposed to occur, in part, through the interaction of the cytoplasmic domains of these transmembrane receptors with intracellular proteins. To identify potential intracellular proteins that interact with the cytoplasmic domain of syndecan-4, we carried out a yeast two-hybrid screen in which the cytoplasmic domain of syndecan-4 was used as bait. As a result of this screen, we have identified a novel cellular protein that interacts with the cytoplasmic domain of syndecan-4 but not with those of the other three syndecan family members. The interaction involves both the membrane proximal and variable central regions of the cytoplasmic domain. We have named this cDNA and encoded protein syndesmos. Syndesmos is ubiquitously expressed and can be myristylated. Consistent with its myristylation and syndecan-4 association, syndesmos colocalizes with syndecan-4 in the ventral plasma membranes of cells plated on fibronectin. When overexpressed in NIH 3T3 cells, syndesmos enhances cell spreading, actin stress fiber and focal contact formation in a serum-independent manner.


Sign in / Sign up

Export Citation Format

Share Document