scholarly journals The Sur7 Protein Regulates Plasma Membrane Organization and Prevents Intracellular Cell Wall Growth inCandida albicans

2008 ◽  
Vol 19 (12) ◽  
pp. 5214-5225 ◽  
Author(s):  
Francisco J. Alvarez ◽  
Lois M. Douglas ◽  
Adam Rosebrock ◽  
James B. Konopka

The Candida albicans plasma membrane plays important roles in cell growth and as a target for antifungal drugs. Analysis of Ca-Sur7 showed that this four transmembrane domain protein localized to stable punctate patches, similar to the plasma membrane subdomains known as eisosomes or MCC that were discovered in S. cerevisiae. The localization of Ca-Sur7 depended on sphingolipid synthesis. In contrast to S. cerevisiae, a C. albicans sur7Δ mutant displayed defects in endocytosis and morphogenesis. Septins and actin were mislocalized, and cell wall synthesis was very abnormal, including long projections of cell wall into the cytoplasm. Several phenotypes of the sur7Δ mutant are similar to the effects of inhibiting β-glucan synthase, suggesting that the abnormal cell wall synthesis is related to activation of chitin synthase activity seen under stress conditions. These results expand the roles of eisosomes by demonstrating that Sur7 is needed for proper plasma membrane organization and cell wall synthesis. A conserved Cys motif in the first extracellular loop of fungal Sur7 proteins is similar to a characteristic motif of the claudin proteins that form tight junctions in animal cells, suggesting a common role for these tetraspanning membrane proteins in forming specialized plasma membrane domains.

mBio ◽  
2011 ◽  
Vol 3 (1) ◽  
Author(s):  
Lois M. Douglas ◽  
Hong X. Wang ◽  
Sabine Keppler-Ross ◽  
Neta Dean ◽  
James B. Konopka

ABSTRACTThe human fungal pathogenCandida albicanscauses lethal systemic infections because of its ability to grow and disseminate in a host. TheC. albicansplasma membrane is essential for virulence by acting as a protective barrier and through its key roles in interfacing with the environment, secretion of virulence factors, morphogenesis, and cell wall synthesis. Difficulties in studying hydrophobic membranes have limited the understanding of how plasma membrane organization contributes to its function and to the actions of antifungal drugs. Therefore, the role of the recently discovered plasma membrane subdomains termed the membrane compartment containing Can1 (MCC) was analyzed by assessing the virulence of asur7Δ mutant. Sur7 is an integral membrane protein component of the MCC that is needed for proper localization of actin, morphogenesis, cell wall synthesis, and responding to cell wall stress. MCC domains are stable 300-nm-sized punctate patches that associate with a complex of cytoplasmic proteins known as an eisosome. Analysis of virulence-related properties of asur7Δ mutant revealed defects in intraphagosomal growth in macrophages that correlate with increased sensitivity to oxidation and copper. Thesur7Δ mutant was also strongly defective in pathogenesis in a mouse model of systemic candidiasis. The mutant cells showed a decreased ability to initiate an infection and greatly diminished invasive growth into kidney tissues. These studies on Sur7 demonstrate that the plasma membrane MCC domains are critical for virulence and represent an important new target for the development of novel therapeutic strategies.IMPORTANCECandida albicans, the most common human fungal pathogen, causes lethal systemic infections by growing and disseminating in a host. The plasma membrane plays key roles in enablingC. albicansto growin vivo, and it is also the target of the most commonly used antifungal drugs. However, plasma membrane organization is poorly understood because of the experimental difficulties in studying hydrophobic components. Interestingly, recent studies have identified a novel type of plasma membrane subdomain in fungi known as the membrane compartment containing Can1 (MCC). Cells lacking the MCC-localized protein Sur7 display broad defects in cellular organization and response to stressin vitro. Consistent with this,C. albicanscells lacking theSUR7gene were more susceptible to attack by macrophages than cells with the gene and showed greatly reduced virulence in a mouse model of systemic infection. Thus, Sur7 and other MCC components represent novel targets for antifungal therapy.


1997 ◽  
Vol 110 (20) ◽  
pp. 2547-2555 ◽  
Author(s):  
M. Arellano ◽  
A. Duran ◽  
P. Perez

The Schizosaccharomyces pombe rho1p GTPase directly activates the (1–3) beta-D-glucan synthase and participates in the regulation of cell wall growth and morphogenesis in this fission yeast. Indirect immunofluorescence experiments using rho1p tagged with hemagglutinin have revealed that rho1p was located at the growing tips during interphase and at the septum prior to cytokinesis, localising to the same areas as actin patches. In S. pombe cdc10-129 mutant cells, arrested in G1, HA-rho1p accumulates at one tip whereas in cdc25-22 mutants, arrested in G2, HA-rho1p accumulates at both tips. In tea1-1 and tea2-1 cdc11-119 mutant cells, HA-rho1p is localised to the new growing tips. Overexpression of different rho1 mutant alleles caused different effects on cortical actin patch distribution, (1–3) beta-D-glucan synthase activation, and sensitivity to cell wall specific antifungal drugs. These results indicate that multiple cellular components are activated by rho1p. Overexpression of the dominant negative rho1T20N allele was lethal as was the rho1+ deletion. Moreover, when rho1+ expression was repressed in actively growing S. pombe, cells died in about 10 to 12 hours. Under these conditions, normal cell morphology was maintained but the level of (1–3) beta-D-glucan synthase activity decreased and the actin patches disappeared. Most cells lysed after cytokinesis during the process of separation, and lysis was not prevented by an osmotic stabiliser. We conclude that rho1p localisation is restricted to growth areas and regulated during the cell cycle and that rho1p is involved in cell wall growth and actin cytoskeleton organisation in S. pombe.


MRS Bulletin ◽  
1999 ◽  
Vol 24 (10) ◽  
pp. 27-31 ◽  
Author(s):  
David Boal

Despite a variety of shapes and sizes, the generic mechanical structure of cells is remarkably similar from one cell type to the next. All cells are bounded by a plasma membrane, a fluid sheet that controls the passage of materials into and out of the cell. Plant cells and bacteria reinforce this membrane with a cell wall, permitting the cell to operate at an elevated osmotic pressure. Simple cells, such as the bacterium shown in Figure 1a, possess a fairly homogeneous interior containing the cell's genetic blueprint and protein workhorses, but no mechanical elements. In contrast, as can be seen in Figure 1b, plant and animal cells contain internal compartments and a filamentous cytoskeleton—a network of biological ropes, cables, and poles that helps maintain the cell's shape and organize its contents.Four principal types of filaments are found in the cytoskeleton: spectrin, actin, microtubules, and a family of intermediate filaments. Not all filaments are present in all cells. The chemical composition of the filaments shows only limited variation from one cell to another, even in organisms as diverse as humans and yeasts. Membranes have a more variable composition, consisting of a bi-layer of dual-chain lipid molecules in which are embedded various proteins and frequently a moderate concentration of cholesterol. The similarity of the cell's mechanical elements in chemical composition and physical characteristics encourages us to search for universal strategies that have developed in nature for the engineering specifications of the cell. In this article, we concentrate on the cytoskeleton and its filaments.


2014 ◽  
Vol 81 (3) ◽  
pp. 806-811 ◽  
Author(s):  
Christian Kock ◽  
Yves F. Dufrêne ◽  
Jürgen J. Heinisch

ABSTRACTYeast cell wall integrity (CWI) signaling serves as a model of the regulation of fungal cell wall synthesis and provides the basis for the development of antifungal drugs. A set of five membrane-spanning sensors (Wsc1 to Wsc3, Mid2, and Mtl1) detect cell surface stress and commence the signaling pathway upon perturbations of either the cell wall structure or the plasma membrane. We here summarize the latest advances in the structure/function relationship primarily of the Wsc1 sensor and critically review the evidence that it acts as a mechanosensor. The relevance and physiological significance of the information obtained for the function of the other CWI sensors, as well as expected future developments, are discussed.


2009 ◽  
Vol 20 (22) ◽  
pp. 4856-4870 ◽  
Author(s):  
Eleonora Rolli ◽  
Enrico Ragni ◽  
Julia Calderon ◽  
Silvia Porello ◽  
Umberto Fascio ◽  
...  

Gas1p is a glucan-elongase that plays a crucial role in yeast morphogenesis. It is predominantly anchored to the plasma membrane through a glycosylphosphatidylinositol, but a fraction was also found covalently bound to the cell wall. We have used fusions with the green fluorescent protein or red fluorescent protein (RFP) to determine its localization. Gas1p was present in microdomains of the plasma membrane, at the mother-bud neck and in the bud scars. By exploiting the instability of RFP-Gas1p, we identified mobile and immobile pools of Gas1p. Moreover, in chs3Δ cells the chitin ring and the cross-linked Gas1p were missing, but this unveiled an additional unexpected localization of Gas1p along the septum line in cells at cytokinesis. Localization of Gas1p was also perturbed in a chs2Δ mutant where a remedial septum is produced. Phenotypic analysis of cells expressing a fusion of Gas1p to a transmembrane domain unmasked new roles of the cell wall-bound Gas1p in the maintenance of the bud neck size and in cell separation. We present evidence that Crh1p and Crh2p are required for tethering Gas1p to the chitin ring and bud scar. These results reveal a new mechanism of protein immobilization at specific sites of the cell envelope.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 314 ◽  
Author(s):  
Jakub Suchodolski ◽  
Daria Derkacz ◽  
Jakub Muraszko ◽  
Jarosław J. Panek ◽  
Aneta Jezierska ◽  
...  

Recognizing the β-glucan component of the Candida albicans cell wall is a necessary step involved in host immune system recognition. Compounds that result in exposed β-glucan recognizable to the immune system could be valuable antifungal drugs. Antifungal development is especially important because fungi are becoming increasingly drug resistant. This study demonstrates that lipopeptide, surfactin, unmasks β-glucan when the C. albicans cells lack ergosterol. This observation also holds when ergosterol is depleted by fluconazole. Surfactin does not enhance the effects of local chitin accumulation in the presence of fluconazole. Expression of the CHS3 gene, encoding a gene product resulting in 80% of cellular chitin, is downregulated. C. albicans exposure to fluconazole changes the composition and structure of the fungal plasma membrane. At the same time, the fungal cell wall is altered and remodeled in a way that makes the fungi susceptible to surfactin. In silico studies show that surfactin can form a complex with β-glucan. Surfactin forms a less stable complex with chitin, which in combination with lowering chitin synthesis, could be a second anti-fungal mechanism of action of this lipopeptide.


2009 ◽  
Vol 77 (9) ◽  
pp. 4150-4160 ◽  
Author(s):  
Lois M. Douglas ◽  
Stephen W. Martin ◽  
James B. Konopka

ABSTRACT The Candida albicans plasma membrane plays critical roles in growth and virulence and as a target for antifungal drugs. Three C. albicans genes that encode Bin-Amphiphysin-Rvs homology domain proteins were mutated to define their roles in plasma membrane function. The deletion of RVS161 and RVS167, but not RVS162, caused strong defects. The rvs161Δ mutant was more defective in endocytosis and morphogenesis than rvs167Δ, but both were strongly defective in polarizing actin patches. Other plasma membrane constituents were still properly localized, including a filipin-stained domain at the hyphal tips. An analysis of growth under different in vitro conditions showed that the rvs161Δ and rvs167Δ mutants grew less invasively in agar and also suggested that they have defects in cell wall synthesis and Rim101 pathway signaling. These mutants were also more resistant to the antimicrobial peptide histatin 5 but showed essentially normal responses to the drugs caspofungin and amphotericin. Surprisingly, the rvs161Δ mutant was more sensitive to fluconazole, whereas the rvs167Δ mutant was more resistant, indicating that these mutations cause overlapping but distinct effects on cells. The rvs161Δ and rvs167Δ mutants both showed greatly reduced virulence in mice. However, the mutants were capable of growing to high levels in kidneys. Histological analyses of infected kidneys revealed that these rvsΔ mutants grew in a large fungal mass that was walled off by leukocytes, rather than forming disseminated microabscesses as seen for the wild type. The diminished virulence is likely due to a combination of the morphogenesis defects that reduce invasive growth and altered cell wall construction that exposes proinflammatory components to the host immune system.


2005 ◽  
Vol 169 (4) ◽  
pp. 635-646 ◽  
Author(s):  
Slobodan Beronja ◽  
Patrick Laprise ◽  
Ophelia Papoulas ◽  
Milena Pellikka ◽  
John Sisson ◽  
...  

Polarized exocytosis plays a major role in development and cell differentiation but the mechanisms that target exocytosis to specific membrane domains in animal cells are still poorly understood. We characterized Drosophila Sec6, a component of the exocyst complex that is believed to tether secretory vesicles to specific plasma membrane sites. sec6 mutations cause cell lethality and disrupt plasma membrane growth. In developing photoreceptor cells (PRCs), Sec6 but not Sec5 or Sec8 shows accumulation at adherens junctions. In late PRCs, Sec6, Sec5, and Sec8 colocalize at the rhabdomere, the light sensing subdomain of the apical membrane. PRCs with reduced Sec6 function accumulate secretory vesicles and fail to transport proteins to the rhabdomere, but show normal localization of proteins to the apical stalk membrane and the basolateral membrane. Furthermore, we show that Rab11 forms a complex with Sec5 and that Sec5 interacts with Sec6 suggesting that the exocyst is a Rab11 effector that facilitates protein transport to the apical rhabdomere in Drosophila PRCs.


1994 ◽  
Author(s):  
Deborah P. Delmer ◽  
Prem S. Chourey

The goal of this work was to understand the role of the enzyme sucrose synthase (SuSy) in synthesis of cellulose and callose in plants. The work resulting from the this grant leads to a number of conclusions. SuSy clearly plays diverse roles in carbon metabolism. It can associate with the plasma membrane of cells undergoing rapid cellulose deposition, such as cotton fibers, developing maize endosperm, gravistimulated pulvini, and transfer cells of the cotton seed. It is also concentrated at sites of high callose deposition (tapetal cells; cell plates). When SuSy levels are lowered by mutation or by anti-sense technology, cell walls undergo degeneration (maize endosperm) and show reduced levels of cellulose (potato tubers). In sum, our evidence has very much strengthened the concept that SuSy does function in the plasma membrane to channel carbon from sucrose via UDP-glucose to glucan synthase complexes. Soluble SuSy also clearly plays a role in providing carbon for starch synthesis and respiration. Surprisingly, we found that the cotton seed is one unique case where SuSy apparently does not play a role in starch synthesis. Current evidence in sum suggests that no specific SuSy gene encodes the membrane-associated form, although in maize the SS 1 form of SuSy may be most important for cell wall synthesis in the early stages of endosperm development. Work is still in progress to determine what does control membrane localization - and the current evidence we have favors a role for Ca2+, and possibly also protein phosphorylation by differentially regulated protein kinases. Finally, we have discovered for the first time, a major new family of genes that encode the catalytic subunit of the cellulose synthase of plants - a result that has been widely cited and opens many new approaches for the study of this important plant function.


Sign in / Sign up

Export Citation Format

Share Document