scholarly journals Mitochondrial enzymes are protected from stress-induced aggregation by mitochondrial chaperones and the Pim1/LON protease

2011 ◽  
Vol 22 (5) ◽  
pp. 541-554 ◽  
Author(s):  
Tom Bender ◽  
Ilka Lewrenz ◽  
Sebastian Franken ◽  
Catherina Baitzel ◽  
Wolfgang Voos

Proteins in a natural environment are constantly challenged by stress conditions, causing their destabilization, unfolding, and, ultimately, aggregation. Protein aggregation has been associated with a wide variety of pathological conditions, especially neurodegenerative disorders, stressing the importance of adequate cellular protein quality control measures to counteract aggregate formation. To secure protein homeostasis, mitochondria contain an elaborate protein quality control system, consisting of chaperones and ATP-dependent proteases. To determine the effects of protein aggregation on the functional integrity of mitochondria, we set out to identify aggregation-prone endogenous mitochondrial proteins. We could show that major metabolic pathways in mitochondria were affected by the aggregation of key enzyme components, which were largely inactivated after heat stress. Furthermore, treatment with elevated levels of reactive oxygen species strongly influenced the aggregation behavior, in particular in combination with elevated temperatures. Using specific chaperone mutant strains, we showed a protective effect of the mitochondrial Hsp70 and Hsp60 chaperone systems. Moreover, accumulation of aggregated polypeptides was strongly decreased by the AAA-protease Pim1/LON. We therefore propose that the proteolytic breakdown of aggregation-prone polypeptides represents a major protective strategy to prevent the in vivo formation of aggregates in mitochondria.

2020 ◽  
Author(s):  
Sonja Blumenstock ◽  
Elena Katharina Schulz-Trieglaff ◽  
Anna-Lena Bolender ◽  
Kerstin Voelkl ◽  
Paul Lapios ◽  
...  

AbstractThe cellular protein quality control machinery is important for preventing protein misfolding and aggregation, and decline in protein homeostasis (proteostasis) is believed to play a crucial role in age-related neurodegenerative disorders. However, how proteostasis capacity of neurons changes in different diseases is not yet sufficiently understood, and progress in this area has been hampered by the lack of tools to monitor proteostasis in mammalian models. Here, we have developed reporter mice for in vivo analysis of neuronal proteostasis. The mice express EGFP-fused firefly luciferase (Fluc), a conformationally unstable protein that requires chaperones for proper folding and sensitively reacts to proteotoxic stress by formation of intracellular Fluc-EGFP foci and by reduced luciferase activity. Using these mice, we provide evidence for proteostasis decline in the aging brain. Moreover, we find a marked impairment in proteostasis in tauopathy mice, but not in Huntington’s disease mice. Mechanistic investigations in primary neuronal cultures demonstrate that cytoplasmic, but not nuclear, aggregates cause defects of cellular protein quality control. Thus, the Fluc-EGFP reporter mice enable new insights into proteostasis alterations in different diseases.


2021 ◽  
pp. 153537022199981
Author(s):  
Chamithi Karunanayake ◽  
Richard C Page

The chaperone heat shock protein 70 (Hsp70) and its network of co-chaperones serve as a central hub of cellular protein quality control mechanisms. Domain organization in Hsp70 dictates ATPase activity, ATP dependent allosteric regulation, client/substrate binding and release, and interactions with co-chaperones. The protein quality control activities of Hsp70 are classified as foldase, holdase, and disaggregase activities. Co-chaperones directly assisting protein refolding included J domain proteins and nucleotide exchange factors. However, co-chaperones can also be grouped and explored based on which domain of Hsp70 they interact. Here we discuss how the network of cytosolic co-chaperones for Hsp70 contributes to the functions of Hsp70 while closely looking at their structural features. Comparison of domain organization and the structures of co-chaperones enables greater understanding of the interactions, mechanisms of action, and roles played in protein quality control.


2017 ◽  
Vol 121 (suppl_1) ◽  
Author(s):  
Matthew J Brody ◽  
Michelle A Sargent ◽  
Jeffery D Molkentin

p97 is a AAA-ATPase that plays critical roles in a myriad of cellular protein quality control processes, including the endoplasmic reticulum (ER)-associated degradation (ERAD) pathway that targets misfolded proteins in the ER for degradation in the cytosol by the ubiquitin proteasome system. Mutations in p97 cause a multisystem degenerative proteinopathy disorder called inclusion body myopathy with Paget disease of bone and frontotemporal dementia (IBMPFD) that includes pathologies of the nervous system, skeletal muscle, bone, and heart. Previous studies in the laboratory into the mechanisms whereby thrombospondin 4 has its cardioprotective effects and enhanced ERAD activity identified p97 as a direct interacting partner. This observation suggested that p97 itself could be an important cardioprotective effector by benefiting protein quality control in the heart. To address this hypothesis here we generated cardiac-specific transgenic mice overexpressing wildtype p97 or a p97 K524A mutant with deficient ATPase activity, the latter of which functioned as a dominant negative. Mice overexpressing wildtype p97 exhibit normal cardiac structure and function while mutant p97 overexpressing mice develop cardiomyopathy, upregulate several ERAD complex components, and have elevated levels of ubiquitinated proteins. Proteomics and immunoprecipitation assays identified overwhelming interactions between endogenous p97 and a number of interesting protein complexes that suggest unique functions for this protein in regulating protein quality control in the heart. The results and novel regulatory relationships will be presented, which suggests entirely unique pathways whereby p97 functions in the heart.


mBio ◽  
2020 ◽  
Vol 11 (4) ◽  
Author(s):  
Samuel H. Becker ◽  
Kathrin Ulrich ◽  
Avantika Dhabaria ◽  
Beatrix Ueberheide ◽  
William Beavers ◽  
...  

ABSTRACT The bacterial pathogen Mycobacterium tuberculosis is the leading cause of death by an infectious disease among humans. Here, we describe a previously uncharacterized M. tuberculosis protein, Rv0991c, as a molecular chaperone that is activated by oxidation. Rv0991c has homologs in most bacterial lineages and appears to function analogously to the well-characterized Escherichia coli redox-regulated chaperone Hsp33, despite a dissimilar protein sequence. Rv0991c is transcriptionally coregulated with hsp60 and hsp70 chaperone genes in M. tuberculosis, suggesting that Rv0991c functions with these chaperones in maintaining protein quality control. Supporting this hypothesis, we found that, like oxidized Hsp33, oxidized Rv0991c prevents the aggregation of a model unfolded protein in vitro and promotes its refolding by the M. tuberculosis Hsp70 chaperone system. Furthermore, Rv0991c interacts with DnaK and can associate with many other M. tuberculosis proteins. We therefore propose that Rv0991c, which we named “Ruc” (redox-regulated protein with unstructured C terminus), represents a founding member of a new chaperone family that protects M. tuberculosis and other species from proteotoxicity during oxidative stress. IMPORTANCE M. tuberculosis infections are responsible for more than 1 million deaths per year. Developing effective strategies to combat this disease requires a greater understanding of M. tuberculosis biology. As in all cells, protein quality control is essential for the viability of M. tuberculosis, which likely faces proteotoxic stress within a host. Here, we identify an M. tuberculosis protein, Ruc, that gains chaperone activity upon oxidation. Ruc represents a previously unrecognized family of redox-regulated chaperones found throughout the bacterial superkingdom. Additionally, we found that oxidized Ruc promotes the protein-folding activity of the essential M. tuberculosis Hsp70 chaperone system. This work contributes to a growing body of evidence that oxidative stress provides a particular strain on cellular protein stability.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Mark J. Ranek ◽  
Christian Oeing ◽  
Rebekah Sanchez-Hodge ◽  
Kristen M. Kokkonen-Simon ◽  
Danielle Dillard ◽  
...  

Abstract Proteotoxicity from insufficient clearance of misfolded/damaged proteins underlies many diseases. Carboxyl terminus of Hsc70-interacting protein (CHIP) is an important regulator of proteostasis in many cells, having E3-ligase and chaperone functions and often directing damaged proteins towards proteasome recycling. While enhancing CHIP functionality has broad therapeutic potential, prior efforts have all relied on genetic upregulation. Here we report that CHIP-mediated protein turnover is markedly post-translationally enhanced by direct protein kinase G (PKG) phosphorylation at S20 (mouse, S19 human). This increases CHIP binding affinity to Hsc70, CHIP protein half-life, and consequent clearance of stress-induced ubiquitinated-insoluble proteins. PKG-mediated CHIP-pS20 or expressing CHIP-S20E (phosphomimetic) reduces ischemic proteo- and cytotoxicity, whereas a phospho-silenced CHIP-S20A amplifies both. In vivo, depressing PKG activity lowers CHIP-S20 phosphorylation and protein, exacerbating proteotoxicity and heart dysfunction after ischemic injury. CHIP-S20E knock-in mice better clear ubiquitinated proteins and are cardio-protected. PKG activation provides post-translational enhancement of protein quality control via CHIP.


2013 ◽  
Vol 91 ◽  
pp. 0-0
Author(s):  
C MARQUES ◽  
P MATAFOME ◽  
A SANTOS ◽  
C LOBO ◽  
F SHANG ◽  
...  

Blood ◽  
2012 ◽  
Vol 119 (22) ◽  
pp. 5265-5275 ◽  
Author(s):  
Eugene Khandros ◽  
Christopher S. Thom ◽  
Janine D'Souza ◽  
Mitchell J. Weiss

Cells remove unstable polypeptides through protein quality-control (PQC) pathways such as ubiquitin-mediated proteolysis and autophagy. In the present study, we investigated how these pathways are used in β-thalassemia, a common hemoglobinopathy in which β-globin gene mutations cause the accumulation and precipitation of cytotoxic α-globin subunits. In β-thalassemic erythrocyte precursors, free α-globin was polyubiquitinated and degraded by the proteasome. These cells exhibited enhanced proteasome activity, and transcriptional profiling revealed coordinated induction of most proteasome subunits that was mediated by the stress-response transcription factor Nrf1. In isolated thalassemic cells, short-term proteasome inhibition blocked the degradation of free α-globin. In contrast, prolonged in vivo treatment of β-thalassemic mice with the proteasome inhibitor bortezomib did not enhance the accumulation of free α-globin. Rather, systemic proteasome inhibition activated compensatory proteotoxic stress-response mechanisms, including autophagy, which cooperated with ubiquitin-mediated proteolysis to degrade free α-globin in erythroid cells. Our findings show that multiple interregulated PQC responses degrade excess α-globin. Therefore, β-thalassemia fits into the broader framework of protein-aggregation disorders that use PQC pathways as cell-protective mechanisms.


2020 ◽  
Vol 36 (1) ◽  
pp. 115-139 ◽  
Author(s):  
Melissa A. Roberts ◽  
James A. Olzmann

Lipid droplets (LDs) are endoplasmic reticulum–derived organelles that consist of a core of neutral lipids encircled by a phospholipid monolayer decorated with proteins. As hubs of cellular lipid and energy metabolism, LDs are inherently involved in the etiology of prevalent metabolic diseases such as obesity and nonalcoholic fatty liver disease. The functions of LDs are regulated by a unique set of associated proteins, the LD proteome, which includes integral membrane and peripheral proteins. These proteins control key activities of LDs such as triacylglycerol synthesis and breakdown, nutrient sensing and signal integration, and interactions with other organelles. Here we review the mechanisms that regulate the composition of the LD proteome, such as pathways that mediate selective and bulk LD protein degradation and potential connections between LDs and cellular protein quality control.


Sign in / Sign up

Export Citation Format

Share Document