scholarly journals Fas-associated factor 1 antagonizes Wnt signaling by promoting β-catenin degradation

2011 ◽  
Vol 22 (9) ◽  
pp. 1617-1624 ◽  
Author(s):  
Long Zhang ◽  
Fangfang Zhou ◽  
Theo van Laar ◽  
Juan Zhang ◽  
Hans van Dam ◽  
...  

The canonical Wnt pathway plays an important role in the regulation of cell proliferation and differentiation. Activation of this signaling pathway causes disruption of the Axin/adenomatous polyposis coli/glycogen synthase kinase 3β complex, resulting in stabilization of β-catenin and its association with lymphoid enhancer factor/T-cell factor in the nucleus. Here, we identify Fas-associated factor 1 (FAF1) as a negative regulator of Wnt/β-catenin signaling. We found overexpression of FAF1 to strongly inhibit Wnt-induced transcriptional reporter activity and to counteract Wnt-induced β-catenin accumulation. Moreover, knockdown of FAF1 resulted in an increase in β-catenin levels and in activation of Wnt/β-catenin–induced transcription. FAF1 was found to interact with β-catenin upon inhibition of proteasome. Ectopic expression of FAF1 promoted β-catenin degradation by enhancing its polyubiquitination. Functional studies in C2C12 myoblasts and KS483 preosteoblastic cells showed that FAF1 depletion resulted in activation of endogenous Wnt-induced genes and enhanced osteoblast differentiation, whereas FAF1 overexpression had the opposite effect. These results identify FAF1 as a novel inhibitory factor of canonical Wnt signaling pathway.

2004 ◽  
Vol 164 (2) ◽  
pp. 243-253 ◽  
Author(s):  
Lorenza Ciani ◽  
Olga Krylova ◽  
Matthew J. Smalley ◽  
Trevor C. Dale ◽  
Patricia C. Salinas

Dishevelled (DVL) is associated with axonal microtubules and regulates microtubule stability through the inhibition of the serine/threonine kinase, glycogen synthase kinase 3β (GSK-3β). In the canonical WNT pathway, the negative regulator Axin forms a complex with β-catenin and GSK-3β, resulting in β-catenin degradation. Inhibition of GSK-3β by DVL increases β-catenin stability and TCF transcriptional activation. Here, we show that Axin associates with microtubules and unexpectedly stabilizes microtubules through DVL. In turn, DVL stabilizes microtubules by inhibiting GSK-3β through a transcription- and β-catenin–independent pathway. More importantly, axonal microtubules are stabilized after DVL localizes to axons. Increased microtubule stability is correlated with a decrease in GSK-3β–mediated phosphorylation of MAP-1B. We propose a model in which Axin, through DVL, stabilizes microtubules by inhibiting a pool of GSK-3β, resulting in local changes in the phosphorylation of cellular targets. Our data indicate a bifurcation in the so-called canonical WNT-signaling pathway to regulate microtubule stability.


Oncogene ◽  
2012 ◽  
Vol 32 (23) ◽  
pp. 2836-2847 ◽  
Author(s):  
N Skalka ◽  
M Caspi ◽  
E Caspi ◽  
Y P Loh ◽  
R Rosin-Arbesfeld

2007 ◽  
Vol 19 (1) ◽  
pp. 199
Author(s):  
K. Hayashi ◽  
R. C. Burghardt ◽  
F. W. Bazer ◽  
T. E. Spencer

In mice WNT signaling regulates cell fate, differentiation, and growth in the conceptus (embryo and associated extra-embryonic membranes), as well as implantation. We studied various components of the WNT signaling pathway in the ovine uterus during the estrous cycle (C) and pregnancy (P) and in the peri-implantation conceptus. Expression of WNT2, WNT2B, and WNT4 mRNAs was very low in endometria of C and P ewes from Days 10 to 16 and in conceptus trophectoderm (Tr). WNT5A/5B mRNAs were abundant in the stratum compactum stroma, whereas WNT11 mRNA was detected in endometrial epithelia of C and P ewes, but not in conceptus Tr. WNT7A mRNA was localized specifically to luminal (LE) and superficial glandular (sGE) epithelia of Day 10 C and P ewes, was undetectable by Day 12, and then increased up to Day 16 and was maximum on Day 20 only in P ewes. Frizzled receptor (FZD6/8) mRNAs were detected primarily in conceptus Tr and uterine LE and GE, whereas the co-receptor LRP5/6 (low density lipoprotein receptor-related protein) mRNAs were expressed in all uterine cell types and conceptus Tr. Dickkopf (DKK1), a negative regulator of WNT signaling, was detected in stratum compactum stroma after Day 14 in P ewes. CTNNB1 (beta-catenin), a key mediator of canonical WNT signaling, and GSK3B (glycogen synthase kinase-3 beta) and CHD1 (E-cadherin) mRNAs were abundant in endometrial epithelia and in conceptus Tr. Immunoreactive CTNNB1 protein was abundant in LE and GE, and present at lower levels in stroma and myometrium in uteri from C and P ewes. In the conceptus Tr, immunoreactive CTNNB1 protein was abundant in nuclei of the mononuclear and binuclear cells (BNC), as well as in cell adherens junctions. Nuclear CTNNB1 interacts with transcription factors, most notably LEF1/TCF7 (lymphoid enhancer-binding factor 1/transcription factor 7), to regulate gene transcription. LEF1 mRNA was detected in LE and sGE, whereas nuclear TCF7L2 protein was particularly abundant in trophoblast giant BNC. WNT/beta-catenin/TCF7 target genes were also studied. MSX2 mRNA was abundant in conceptus Tr, and MYC mRNA was abundant in BNC of conceptus Tr and endometrial epithelia. Next, ovine Tr (oTr) cells and endometrial stromal (oST) cells were used for mechanistic studies that revealed that transfection of mouse WNT7A stimulated a LEF/TCF-responsive reporter (TOPFLASH), and co-transfection of either dnTCF or SFRP2 (a secreted FZD inhibitor) inhibited WNT7A effects. WNT7A stimulated expression of MSX2 and MYC in oTr cells, and this effect was inhibited by SFRP2. These results implicate the canonical WNT system as a regulator of peri-implantation conceptus growth and differentiation in sheep. This work was supported by NIH HD38274 and 5 P30 ES09106 funding.


2019 ◽  
Vol 20 (22) ◽  
pp. 5525 ◽  
Author(s):  
Kazuhiro Maeda ◽  
Yasuhiro Kobayashi ◽  
Masanori Koide ◽  
Shunsuke Uehara ◽  
Masanori Okamoto ◽  
...  

Wnt, a secreted glycoprotein, has an approximate molecular weight of 40 kDa, and it is a cytokine involved in various biological phenomena including ontogeny, morphogenesis, carcinogenesis, and maintenance of stem cells. The Wnt signaling pathway can be classified into two main pathways: canonical and non-canonical. Of these, the canonical Wnt signaling pathway promotes osteogenesis. Sclerostin produced by osteocytes is an inhibitor of this pathway, thereby inhibiting osteogenesis. Recently, osteoporosis treatment using an anti-sclerostin therapy has been introduced. In this review, the basics of Wnt signaling, its role in bone metabolism and its involvement in skeletal disorders have been covered. Furthermore, the clinical significance and future scopes of Wnt signaling in osteoporosis, osteoarthritis, rheumatoid arthritis and neoplasia are discussed.


2013 ◽  
Vol 72 (Suppl 3) ◽  
pp. A807.1-A807
Author(s):  
M. H. van den Bosch ◽  
A. B. Blom ◽  
P. L. van Lent ◽  
H. M. van Beuningen ◽  
F. A. van de Loo ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Kaylee Bundy ◽  
Jada Boone ◽  
C. LaShan Simpson

Cardiovascular disease is a worldwide epidemic and considered the leading cause of death globally. Due to its high mortality rates, it is imperative to study the underlying causes and mechanisms of the disease. Vascular calcification, or the buildup of hydroxyapatite within the arterial wall, is one of the greatest contributors to cardiovascular disease. Medial vascular calcification is a predictor of cardiovascular events such as, but not limited to, hypertension, stiffness, and even heart failure. Vascular smooth muscle cells (VSMCs), which line the arterial wall and function to maintain blood pressure, are hypothesized to undergo a phenotypic switch into bone-forming cells during calcification, mimicking the manner by which mesenchymal stem cells differentiate into osteoblast cells throughout osteogenesis. RunX2, a transcription factor necessary for osteoblast differentiation and a target gene of the Wnt signaling pathway, has also shown to be upregulated when calcification is present, implicating that the Wnt cascade may be a key player in the transdifferentiation of VSMCs. It is important to note that the phenotypic switch of VSMCs from a healthy, contractile state to a proliferative, synthetic state is necessary in response to the vascular injury surrounding calcification. The lingering question, however, is if VSMCs acquire this synthetic phenotype through the Wnt pathway, how and why does this signaling occur? This review seeks to highlight the potential role of the canonical Wnt signaling pathway within vascular calcification based on several studies and further discuss the Wnt ligands that specifically aid in VSMC transdifferentiation.


Sign in / Sign up

Export Citation Format

Share Document