scholarly journals Role of malectin in Glc2Man9GlcNAc2-dependent quality control of α1-antitrypsin

2011 ◽  
Vol 22 (19) ◽  
pp. 3559-3570 ◽  
Author(s):  
Yang Chen ◽  
Dan Hu ◽  
Rikio Yabe ◽  
Hiroaki Tateno ◽  
Sheng-Ying Qin ◽  
...  

Malectin was first discovered as a novel endoplasmic reticulum (ER)–resident lectin from Xenopus laevis that exhibits structural similarity to bacterial glycosylhydrolases. Like other intracellular lectins involved in glycoprotein quality control, malectin is highly conserved in animals. Here results from in vitro membrane-based binding assays and frontal affinity chromatography confirm that human malectin binds specifically to Glc2Man9GlcNAc2 (G2M9) N-glycan, with a Ka of 1.97 × 105 M−1, whereas binding to Glc1Man9GlcNAc2 (G1M9), Glc3Man9GlcNAc2 (G3M9), and other N-glycans is barely detectable. Metabolic labeling and immunoprecipitation experiments demonstrate that before entering the calnexin cycle, the folding-defective human α1-antitrypsin variant null Hong Kong (ATNHK) stably associates with malectin, whereas wild-type α1-antitrypsin (AT) or N-glycan–truncated variant of ATNHK (ATNHK-Q3) dose not. Moreover, malectin overexpression dramatically inhibits the secretion of ATNHK through a mechanism that involves enhanced ER-associated protein degradation; by comparison, the secretion of AT and ATNHK-Q3 is only slightly affected by malectin overexpression. ER-stress induced by tunicamycin results in significantly elevated mRNA transcription of malectin. These observations suggest a possible role of malectin in regulating newly synthesized glycoproteins via G2M9 recognition.

2013 ◽  
Vol 288 (23) ◽  
pp. 16391-16402 ◽  
Author(s):  
Amit Kunte ◽  
Wei Zhang ◽  
Crina Paduraru ◽  
Natacha Veerapen ◽  
Liam R. Cox ◽  
...  

The non-classical major histocompatibility complex (MHC) homologue CD1d presents lipid antigens to innate-like lymphocytes called natural-killer T (NKT) cells. These cells, by virtue of their broad cytokine repertoire, shape innate and adaptive immune responses. Here, we have assessed the role of endoplasmic reticulum glycoprotein quality control in CD1d assembly and function, specifically the role of a key component of the quality control machinery, the enzyme UDP glucose glycoprotein glucosyltransferase (UGT1). We observe that in UGT1-deficient cells, CD1d associates prematurely with β2-microglobulin (β2m) and is able to rapidly exit the endoplasmic reticulum. At least some of these CD1d-β2m heterodimers are shorter-lived and can be rescued by provision of a defined exogenous antigen, α-galactosylceramide. Importantly, we show that in UGT1-deficient cells the CD1d-β2m heterodimers have altered antigenicity despite the fact that their cell surface levels are unchanged. We propose that UGT1 serves as a quality control checkpoint during CD1d assembly and further suggest that UGT1-mediated quality control can shape the lipid repertoire of newly synthesized CD1d. The quality control process may play a role in ensuring stability of exported CD1d-β2m complexes, in facilitating presentation of low abundance high affinity antigens, or in preventing deleterious responses to self lipids.


1998 ◽  
Vol 9 (10) ◽  
pp. 2767-2784 ◽  
Author(s):  
Diego Loayza ◽  
Amy Tam ◽  
Walter K. Schmidt ◽  
Susan Michaelis

We are studying the intracellular trafficking of the multispanning membrane protein Ste6p, the a-factor transporter inSaccharomyces cerevisiae and a member of the ATP-binding cassette superfamily of proteins. In the present study, we have used Ste6p as model for studying the process of endoplasmic reticulum (ER) quality control, about which relatively little is known in yeast. We have identified three mutant forms of Ste6p that are aberrantly ER retained, as determined by immunofluorescence and subcellular fractionation. By pulse-chase metabolic labeling, we demonstrate that these mutants define two distinct classes. The single member of Class I, Ste6–166p, is highly unstable. We show that its degradation involves the ubiquitin–proteasome system, as indicated by its in vivo stabilization in certain ubiquitin–proteasome mutants or when cells are treated with the proteasome inhibitor drug MG132. The two Class II mutant proteins, Ste6–13p and Ste6–90p, are hyperstable relative to wild-type Ste6p and accumulate in the ER membrane. This represents the first report of a single protein in yeast for which distinct mutant forms can be channeled to different outcomes by the ER quality control system. We propose that these two classes of ER-retained Ste6p mutants may define distinct checkpoint steps in a linear pathway of ER quality control in yeast. In addition, a screen for high-copy suppressors of the mating defect of one of the ER-retained ste6 mutants has identified a proteasome subunit, Hrd2p/p97, previously implicated in the regulated degradation of wild-type hydroxymethylglutaryl-CoA reductase in the ER membrane.


Author(s):  
Katie Jo Rohn-Glowacki ◽  
Charles N. Falany

AbstractDrug-drug interactions (DDI) with oral contraceptives containing 17α-ethinylestradiol (EE2) have been well characterized with regard to interactions with phase I drug metaolizing enzymes; however, DDI with EE2 and phase II enzymes have not been as thoroughly addressed. Our laboratory recently reported that in vitro EE2 potently inhibits human cytosolic sulfotransferase (SULT) 1A1 while EE2 was not sulfated until micromolar concentrations. Molecular docking studies demonstrated that Tyr169 and isoleucine 89 (Ile89) may play a role in the inhibitory and/or catalytic positioning of EE2 within the active site of SULT1A1. Therefore, the current study focused on determining the role of Ile89 in the inhibition of SULT1A1 utilizing site-directed mutagenesis. Ile89 was mutated to an alanine and the effect of the mutation was characterized using kinetic and binding assays. SULT1A1-Ile89Ala was found to have a Km for EE2 that was 11-fold greater than wild-type enzyme. A decreased affinity (Kd) of EE2 for SULT1A1-Ile89Ala was apparently responsible for the increase in Km, and also resulted in the loss of the potent inhibition. Molecular modeling was used in an attempt to determine the atomic level changes in binding of EE2 to SULT1A1-Ile89Ala. However, analysis of the effect of the single Ile89 mutation on both the open and closed homology models was not consistent with the docking and kinetic results. Overall, the mechanism of inhibition of EE2 for SULT1A1 is apparently the result of interactions of Ile89 with EE2 holding it in a potent inhibitory conformation, and mutation of the Ile89 significantly decreases the inhibition.


2021 ◽  
Vol 11 (15) ◽  
pp. 6865
Author(s):  
Eun Seon Lee ◽  
Joung Hun Park ◽  
Seong Dong Wi ◽  
Ho Byoung Chae ◽  
Seol Ki Paeng ◽  
...  

The thioredoxin-h (Trx-h) family of Arabidopsis thaliana comprises cytosolic disulfide reductases. However, the physiological function of Trx-h2, which contains an additional 19 amino acids at its N-terminus, remains unclear. In this study, we investigated the molecular function of Trx-h2 both in vitro and in vivo and found that Arabidopsis Trx-h2 overexpression (Trx-h2OE) lines showed significantly longer roots than wild-type plants under cold stress. Therefore, we further investigated the role of Trx-h2 under cold stress. Our results revealed that Trx-h2 functions as an RNA chaperone by melting misfolded and non-functional RNAs, and by facilitating their correct folding into active forms with native conformation. We showed that Trx-h2 binds to and efficiently melts nucleic acids (ssDNA, dsDNA, and RNA), and facilitates the export of mRNAs from the nucleus to the cytoplasm under cold stress. Moreover, overexpression of Trx-h2 increased the survival rate of the cold-sensitive E. coli BX04 cells under low temperature. Thus, our data show that Trx-h2 performs function as an RNA chaperone under cold stress, thus increasing plant cold tolerance.


2021 ◽  
Vol 22 (4) ◽  
pp. 1825
Author(s):  
Li Hao ◽  
Aaron J. Marshall ◽  
Lixin Liu

Bam32 (B cell adaptor molecule of 32 kDa) functions in the immune responses of various leukocytes. However, the role of neutrophil Bam32 in inflammation is entirely unknown. Here, we determined the role of Bam32 in chemokine CXCL2-induced neutrophil chemotaxis in three mouse models of neutrophil recruitment. By using intravital microscopy in the mouse cremaster muscle, we found that transmigrated neutrophil number, neutrophil chemotaxis velocity, and total neutrophil chemotaxis distance were increased in Bam32−/− mice when compared with wild-type (WT) mice. In CXCL2-induced mouse peritonitis, the total emigrated neutrophils were increased in Bam32−/− mice at 2 but not 4 h. The CXCL2-induced chemotaxis distance and migration velocity of isolated Bam32−/− neutrophils in vitro were increased. We examined the activation of small GTPases Rac1, Rac2, and Rap1; the levels of phospho-Akt2 and total Akt2; and their crosstalk with Bam32 in neutrophils. The deficiency of Bam32 suppressed Rap1 activation without changing the activation of Rac1 and Rac2. The pharmacological inhibition of Rap1 by geranylgeranyltransferase I inhibitor (GGTI298) increased WT neutrophil chemotaxis. In addition, the deficiency of Bam32, as well as the inhibition of Rap1 activation, increased the levels of CXCL2-induced Akt1/2 phosphorylation at Thr308/309 in neutrophils. The inhibition of Akt by SH-5 attenuated CXCL2-induced adhesion and emigration in Bam32−/− mice. Together, our results reveal that Bam32 has a suppressive role in chemokine-induced neutrophil chemotaxis by regulating Rap1 activation and that this role of Bam32 in chemokine-induced neutrophil recruitment relies on the activation of PI3K effector Akt.


1994 ◽  
Vol 301 (2) ◽  
pp. 577-583 ◽  
Author(s):  
K Oda ◽  
J Cheng ◽  
T Saku ◽  
N Takami ◽  
M Sohda ◽  
...  

Placental alkaline phosphatase (PLAP) is initially synthesized as a precursor (proPLAP) with a C-terminal extension. We constructed a recombinant cDNA which encodes a chimeric protein (alpha GL-PLAP) comprising rat alpha 2u-globulin (alpha GL) and the C-terminal extension of PLAP. Two molecular species (25 kDa and 22 kDa) were expressed in the COS-1 cell transfected with the cDNA for alpha GL-PLAP. Only the 22 kDa form was labelled with both [3H]stearic acid and [3H]ethanolamine. Upon digestion with phosphatidylinositol-specific phospholipase C the 22 kDa form was released into the medium, indicating that this form is anchored on the cell surface via glycosylphosphatidylinositol (GPI). A specific IgG raised against a C-terminal nonapeptide of proPLAP precipitated the 25 kDa form but not the 22 kDa form, suggesting that the 25 kDa form is a precursor retaining the C-terminal propeptide. When a mutant alpha GL-PLAP, in which the aspartic acid residue is replaced with tryptophan at a putative cleavage/attachment site, was expressed in COS-1 cells, the 25 kDa precursor was the only form found inside the cell and retained in the endoplasmic reticulum, as judged by immunofluorescence microscopy. In vitro translation programmed with mRNAs coding for the wild-type and mutant forms of alpha GL-PLAP demonstrated that the C-terminal propeptide was cleaved from the wild-type chimeric protein, but not from the mutant one. This gave rise to the 22 kDa form attached with a GPI anchor, suggesting that GPI is covalently linked to the aspartic acid residue (Asp159) of alpha GL-PLAP. Taken together, these results indicate that the C-terminal propeptide of PLAP functions as a signal to render alpha GL a GPI-linked membrane protein in vitro and in vivo in cultured cells, and that the chimeric protein constructed in this study may be useful for elucidating the mechanism underlying the cleavage of the propeptide and attachment of GPI, which occur in the endoplasmic reticulum.


2014 ◽  
Vol 307 (3) ◽  
pp. H337-H345 ◽  
Author(s):  
Lara Gotha ◽  
Sang Yup Lim ◽  
Azriel B. Osherov ◽  
Rafael Wolff ◽  
Beiping Qiang ◽  
...  

Perlecan is a proteoglycan composed of a 470-kDa core protein linked to three heparan sulfate (HS) glycosaminoglycan chains. The intact proteoglycan inhibits the smooth muscle cell (SMC) response to vascular injury. Hspg2Δ3/Δ3 (MΔ3/Δ3) mice produce a mutant perlecan lacking the HS side chains. The objective of this study was to determine differences between these two types of perlecan in modifying SMC activities to the arterial injury response, in order to define the specific role of the HS side chains. In vitro proliferative and migratory activities were compared in SMC isolated from MΔ3/Δ3 and wild-type mice. Proliferation of MΔ3/Δ3 SMC was 1.5× greater than in wild type ( P < 0.001), increased by addition of growth factors, and showed a 42% greater migratory response than wild-type cells to PDGF-BB ( P < 0.001). In MΔ3/Δ3 SMC adhesion to fibronectin, and collagen types I and IV was significantly greater than wild type. Addition of DRL-12582, an inducer of perlecan expression, decreased proliferation and migratory response to PDGF-BB stimulation in wild-type SMC compared with MΔ3/Δ3. In an in vivo carotid artery wire injury model, the medial thickness, medial area/lumen ratio, and macrophage infiltration were significantly increased in the MΔ3/Δ3 mice, indicating a prominent role of the HS side chain in limiting vascular injury response. Mutant perlecan that lacks HS side chains had a marked reduction in the inhibition of in vitro SMC function and the in vivo arterial response to injury, indicating the critical role of HS side chains in perlecan function in the vessel wall.


2001 ◽  
Vol 21 (24) ◽  
pp. 8565-8574 ◽  
Author(s):  
Anthony J. Greenberg ◽  
Paul Schedl

ABSTRACT The Drosophila melanogaster GAGA factor (encoded by the Trithorax-like [Trl] gene) is required for correct chromatin architecture at diverse chromosomal sites. The Trl gene encodes two alternatively spliced isoforms of the GAGA factor (GAGA-519 and GAGA-581) that are identical except for the length and sequence of the C-terminal glutamine-rich (Q) domain. In vitro and tissue culture experiments failed to find any functional difference between the two isoforms. We made a set of transgenes that constitutively express cDNAs coding for either of the isoforms with the goal of elucidating their roles in vivo. Phenotypic analysis of the transgenes in Trl mutant background led us to the conclusion that GAGA-519 and GAGA-581 perform different, albeit largely overlapping, functions. We also expressed a fusion protein with LacZ disrupting the Q domain of GAGA-519. This LacZ fusion protein compensated for the loss of wild-type GAGA factor to a surprisingly large extent. This suggests that the Q domain either is not required for the essential functions performed by the GAGA protein or is exclusively used for tetramer formation. These results are inconsistent with a major role of the Q domain in chromatin remodeling or transcriptional activation. We also found that GAGA-LacZ was able to associate with sites not normally occupied by the GAGA factor, pointing to a role of the Q domain in binding site choice in vivo.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Paul White ◽  
Samuel F. Haysom ◽  
Matthew G. Iadanza ◽  
Anna J. Higgins ◽  
Jonathan M. Machin ◽  
...  

AbstractThe folding of β-barrel outer membrane proteins (OMPs) in Gram-negative bacteria is catalysed by the β-barrel assembly machinery (BAM). How lateral opening in the β-barrel of the major subunit BamA assists in OMP folding, and the contribution of membrane disruption to BAM catalysis remain unresolved. Here, we use an anti-BamA monoclonal antibody fragment (Fab1) and two disulphide-crosslinked BAM variants (lid-locked (LL), and POTRA-5-locked (P5L)) to dissect these roles. Despite being lethal in vivo, we show that all complexes catalyse folding in vitro, albeit less efficiently than wild-type BAM. CryoEM reveals that while Fab1 and BAM-P5L trap an open-barrel state, BAM-LL contains a mixture of closed and contorted, partially-open structures. Finally, all three complexes globally destabilise the lipid bilayer, while BamA does not, revealing that the BAM lipoproteins are required for this function. Together the results provide insights into the role of BAM structure and lipid dynamics in OMP folding.


2011 ◽  
Vol 109 (suppl_1) ◽  
Author(s):  
Allen M Andres ◽  
Chengqun Huang ◽  
Eric P Ratliff ◽  
Genaro Hernandez ◽  
Pamela Lee ◽  
...  

Autophagy-dependent mitochondrial turnover in response to cellular stress is necessary for maintaining cellular homeostasis. However, the mechanisms that govern the selective targeting of damaged mitochondria are poorly understood. Parkin, an E3 ubiquitin ligase, has been shown to be essential for the selective clearance of damaged mitochondria. Parkin is expressed in the heart, yet its function has not been investigated in the context of cardioprotection. We previously reported that autophagy is required for cardioprotection by ischemic preconditioning (IPC). In the present study, we used simulated ischemia in vitro and IPC in hearts (in vivo and ex vivo) to investigate the role of Parkin in mediating cardioprotection. In HL-1 cells, simulated ischemia induced Parkin translocation to mitochondria and mitochondrial elimination. Mitochondrial loss was blunted in Atg5-deficient cells, revealing the requirement for autophagy in mitochondrial elimination. Consistent with previous reports implicating p62/SQSTM1 in mitophagy, we found that downregulation of p62 attenuated mitophagy and exacerbated cell death in HL-1 cardiomyocytes subjected to simulated ischemia. While wild type mice showed p62 translocation to mitochondria after IPC, Parkin knockout mice exhibited attenuated translocation of p62 to mitochondria. Importantly, ablation of Parkin in mice abolished the cardioprotective effects of IPC. These results reveal for the first time the crucial role of Parkin and mitophagy in cardioprotection.


Sign in / Sign up

Export Citation Format

Share Document