scholarly journals Cbk1 kinase and Bck2 control MAP kinase activation and inactivation during heat shock

2011 ◽  
Vol 22 (24) ◽  
pp. 4892-4907 ◽  
Author(s):  
Venkata K. Kuravi ◽  
Cornelia Kurischko ◽  
Manasi Puri ◽  
Francis C. Luca

Saccharomyces cerevisiae Cbk1 kinase is a LATS/NDR tumor suppressor orthologue and component of the Regulation of Ace2 and Morphogenesis signaling network. Cbk1 was previously implicated in regulating polarized morphogenesis, gene expression, and cell integrity. Here we establish that Cbk1 is critical for heat shock and cell wall stress signaling via Bck2, a protein associated with the Pkc1-Mpk1 cell integrity pathway. We demonstrate that cbk1 and bck2 loss-of-function mutations prevent Mpk1 kinase activation and Mpk1-dependent gene expression but do not disrupt Mpk1 Thr-190/Tyr-192 phosphorylation. Bck2 overexpression partially restores Mpk1-dependent Rlm1 transcription factor activity in cbk1 mutants, suggesting that Bck2 functions downstream of Cbk1. We demonstrate that Bck2 precisely colocalizes with the mitogen-activated protein kinase (MAPK) phosphatase Sdp1. During heat shock, Bck2 and Sdp1 transiently redistribute from nuclei and the cytosol to mitochondria and other cytoplasmic puncta before returning to their pre-stressed localization patterns. Significantly, Cbk1 inhibition delays the return of Bck2 and Sdp1 to their pre-stressed localization patterns and delays Mpk1 Thr-190/Tyr-192 dephosphorylation upon heat shock adaptation. We conclude that Cbk1 and Bck2 are required for Mpk1 activation during heat shock and cell wall stress and for Mpk1 dephosphorylation during heat shock adaptation. These data provide the first evidence that Cbk1 kinase regulates MAPK-dependent stress signaling and provide mechanistic insight into Sdp1 phosphatase regulation.

1999 ◽  
Vol 181 (11) ◽  
pp. 3330-3340 ◽  
Author(s):  
Troy Ketela ◽  
Robin Green ◽  
Howard Bussey

ABSTRACT The MID2 gene of Saccharomyces cerevisiaeencodes a protein with structural features indicative of a plasma membrane-associated cell wall sensor. MID2 was isolated as a multicopy activator of the Skn7p transcription factor. Deletion ofMID2 causes resistance to calcofluor white, diminished production of stress-induced cell wall chitin under a variety of conditions, and changes in growth rate and viability in a number of different cell wall biosynthesis mutants. Overexpression ofMID2 causes hyperaccumulation of chitin and increased sensitivity to calcofluor white. α-Factor hypersensitivity ofmid2Δ mutants can be suppressed by overexpression of upstream elements of the cell integrity pathway, includingPKC1, RHO1, WSC1, andWSC2. Mid2p and Wsc1p appear to have overlapping roles in maintaining cell integrity since mid2Δ wsc1Δ mutants are inviable on medium that does not contain osmotic support. A role for MID2 in the cell integrity pathway is further supported by the finding that MID2 is required for induction of Mpk1p tyrosine phosphorylation during exposure to α-factor, calcofluor white, or high temperature. Our data are consistent with a role for Mid2p in sensing cell wall stress and in activation of a response that includes both increased chitin synthesis and the Mpk1p mitogen-activated protein kinase cell integrity pathway. In addition, we have identified an open reading frame, MTL1, which encodes a protein with both structural and functional similarity to Mid2p.


2007 ◽  
Vol 73 (7) ◽  
pp. 2128-2134 ◽  
Author(s):  
Silke Hagen ◽  
Florentine Marx ◽  
Arthur F. Ram ◽  
Vera Meyer

ABSTRACT The antifungal protein AFP from Aspergillus giganteus is highly effective in restricting the growth of major human- and plant-pathogenic filamentous fungi. However, a fundamental prerequisite for the use of AFP as an antifungal drug is a complete understanding of its mode of action. In this study, we performed several analyses focusing on the assumption that the chitin biosynthesis of sensitive fungi is targeted by AFP. Here we show that the N-terminal domain of AFP (amino acids 1 to 33) is sufficient for efficient binding of AFP to chitin but is not adequate for inhibition of the growth of sensitive fungi. AFP susceptibility tests and SYTOX Green uptake experiments with class III and class V chitin synthase mutants of Fusarium oxysporum and Aspergillus oryzae showed that deletions made the fungi less sensitive to AFP and its membrane permeabilization effect. In situ chitin synthase activity assays revealed that chitin synthesis is specifically inhibited by AFP in sensitive fungi, indicating that AFP causes cell wall stress and disturbs cell integrity. Further evidence that there was AFP-induced cell wall stress was obtained by using an Aspergillus niger reporter strain in which the cell wall integrity pathway was strongly induced by AFP.


1999 ◽  
Vol 147 (1) ◽  
pp. 163-174 ◽  
Author(s):  
Pierre-Alain Delley ◽  
Michael N. Hall

Cells sense and physiologically respond to environmental stress via signaling pathways. Saccharomyces cerevisiae cells respond to cell wall stress by transiently depolarizing the actin cytoskeleton. We report that cell wall stress also induces a transient depolarized distribution of the cell wall biosynthetic enzyme glucan synthase FKS1 and its regulatory subunit RHO1, possibly as a mechanism to repair general cell wall damage. The redistribution of FKS1 is dependent on the actin cytoskeleton. Depolarization of the actin cytoskeleton and FKS1 is mediated by the plasma membrane protein WSC1, the RHO1 GTPase switch, PKC1, and a yet-to-be defined PKC1 effector branch. WSC1 behaves like a signal transducer or a stress-specific actin landmark that both controls and responds to the actin cytoskeleton, similar to the bidirectional signaling between integrin receptors and the actin cytoskeleton in mammalian cells. The PKC1-activated mitogen-activated protein kinase cascade is not required for depolarization, but rather for repolarization of the actin cytoskeleton and FKS1. Thus, activated RHO1 can mediate both polarized and depolarized cell growth via the same effector, PKC1, suggesting that RHO1 may function as a rheostat rather than as a simple on-off switch.


2001 ◽  
Vol 21 (19) ◽  
pp. 6515-6528 ◽  
Author(s):  
Kristin Baetz ◽  
Jason Moffat ◽  
Jennifer Haynes ◽  
Michael Chang ◽  
Brenda Andrews

ABSTRACT In Saccharomyces cerevisiae, the heterodimeric transcription factor SBF (for SCB binding factor) is composed of Swi4 and Swi6 and activates gene expression at the G1/S-phase transition of the mitotic cell cycle. Cell cycle commitment is associated not only with major alterations in gene expression but also with highly polarized cell growth; the mitogen-activated protein kinase (MAPK) Slt2 is required to maintain cell wall integrity during periods of polarized growth and cell wall stress. We describe experiments aimed at defining the regulatory pathway involving the cell cycle transcription factor SBF and Slt2-MAPK. Gene expression assays and chromatin immunoprecipitation experiments revealed Slt2-dependent recruitment of SBF to the promoters of the G1 cyclinsPCL1 and PCL2 after activation of the Slt2-MAPK pathway. We performed DNA microarray analysis and identified other genes whose expression was reduced in both SLT2and SWI4 deletion strains. Genes that are sensitive to both Slt2 and Swi4 appear to be uniquely regulated and reveal a role for Swi4, the DNA-binding component of SBF, which is independent of the regulatory subunit Swi6. Some of the Swi4- and Slt2-dependent genes do not require Swi6 for either their expression or for Swi4 localization to their promoters. Consistent with these results, we found a direct interaction between Swi4 and Slt2. Our results establish a new Slt2-dependent mode of Swi4 regulation and suggest roles for Swi4 beyond its prominent role in controlling cell cycle transcription.


2015 ◽  
Vol 14 (4) ◽  
pp. 359-370 ◽  
Author(s):  
Marc Swidergall ◽  
Lasse van Wijlick ◽  
Joachim F. Ernst

ABSTRACTCandida albicansadapts to the human host by environmental sensing using the Msb2 signal mucin, which regulates fungal morphogenesis and resistance characteristics. Msb2 is anchored within the cytoplasmic membrane by a single transmembrane (TM) region dividing it into a large N-terminal exodomain, which is shed, and a small cytoplasmic domain. Analyses of strains carrying deleted Msb2 variants revealed an exodomain segment required for cleavage, shedding, and all functions of Msb2. Phosphorylation of the mitogen-activated protein kinase (MAP kinase) Cek1 was regulated by three distinct regions in Msb2: in unstressed cells, N-terminal sequences repressed phosphorylation, while its induction under cell wall stress required the cytoplasmic tail (C-tail) and sequences N-terminally flanking the TM region, downstream of the proposed cleavage site. Within the latter Msb2 region, overlapping but not identical sequences were also required for hyphal morphogenesis, basal resistance to antifungals, and, in unstressed cells, downregulation of thePMT1transcript, encoding proteinO-mannosyltransferase-1. Deletion of two-thirds of the exodomain generated a truncated Msb2 variant with a striking ability to induce hyperfilamentous growth, which depended on the presence of the Msb2-interacting protein Sho1, the MAP kinase Cek1, and the Efg1 transcription factor. Under cell wall stress, the cytoplasmic tail relocalized partially to the nucleus and contributed to regulation of 117 genes, as revealed by transcriptomic analyses. Genes regulated by the C-tail contained binding sites for the Ace2 and Azf1 transcription factors and included theALScell wall genes. We concluded that Msb2 fulfills its numerous functions by employing functional domains that are distributed over its entire length.


2020 ◽  
Author(s):  
Marina Campos Rocha ◽  
Karine Minari ◽  
João Henrique Tadini Marilhano Fabri ◽  
Joshua D. Kerkaert ◽  
Lisandra Marques Gava ◽  
...  

2012 ◽  
Vol 23 (14) ◽  
pp. 2805-2817 ◽  
Author(s):  
A. Belén Sanz ◽  
Raúl García ◽  
Jose Manuel Rodríguez-Peña ◽  
Sonia Díez-Muñiz ◽  
César Nombela ◽  
...  

In Saccharomyces cerevisiae, the transcriptional program triggered by cell wall stress is coordinated by Slt2/Mpk1, the mitogen-activated protein kinase (MAPK) of the cell wall integrity (CWI) pathway, and is mostly mediated by the transcription factor Rlm1. Here we show that the SWI/SNF chromatin-remodeling complex plays a critical role in orchestrating the transcriptional response regulated by Rlm1. swi/snf mutants show drastically reduced expression of cell wall stress–responsive genes and hypersensitivity to cell wall–interfering compounds. On stress, binding of RNA Pol II to the promoters of these genes depends on Rlm1, Slt2, and SWI/SNF. Rlm1 physically interacts with SWI/SNF to direct its association to target promoters. Finally, we observe nucleosome displacement at the CWI-responsive gene MLP1/KDX1, which relies on the SWI/SNF complex. Taken together, our results identify the SWI/SNF complex as a key element of the CWI MAPK pathway that mediates the chromatin remodeling necessary for adequate transcriptional response to cell wall stress.


2018 ◽  
Vol 275 ◽  
pp. 17-23 ◽  
Author(s):  
Lucía da Cruz Cabral ◽  
Josué Delgado ◽  
María J. Andrade ◽  
Mar Rodríguez ◽  
Alicia Rodríguez

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Tomás Edreira ◽  
Rubén Celador ◽  
Elvira Manjón ◽  
Yolanda Sánchez

In fission yeast, the septation initiation network (SIN) ensures temporal coordination between actomyosin ring (CAR) constriction with membrane ingression and septum synthesis. However, questions remain about CAR regulation under stress conditions. We show that Rgf1p (Rho1p GEF), participates in a delay of cytokinesis under cell wall stress (blankophor, BP). BP did not interfere with CAR assembly or the rate of CAR constriction, but did delay the onset of constriction in the wild type cells but not in the rgf1Δ cells. This delay was also abolished in the absence of Pmk1p, the MAPK of the cell integrity pathway (CIP), leading to premature abscission and a multi-septated phenotype. Moreover, cytokinesis delay correlates with maintained SIN signaling and depends on the SIN to be achieved. Thus, we propose that the CIP participates in a checkpoint, capable of triggering a CAR constriction delay through the SIN pathway to ensure that cytokinesis terminates successfully.


2019 ◽  
Vol 85 (15) ◽  
Author(s):  
Nisarut Udom ◽  
Pakkanan Chansongkrow ◽  
Varodom Charoensawan ◽  
Choowong Auesukaree

ABSTRACT During fermentation, a high ethanol concentration is a major stress that influences the vitality and viability of yeast cells, which in turn leads to a termination of the fermentation process. In this study, we show that the BCK1 and SLT2 genes encoding mitogen-activated protein kinase kinase kinase (MAPKKK) and mitogen-activated protein kinase (MAPK) of the cell wall integrity (CWI) pathway, respectively, are essential for ethanol tolerance, suggesting that the CWI pathway is involved in the response to ethanol-induced cell wall stress. Upon ethanol exposure, the CWI pathway induces the expression of specific cell wall-remodeling genes, including FKS2, CRH1, and PIR3 (encoding β-1,3-glucan synthase, chitin transglycosylase, and O-glycosylated cell wall protein, respectively), which eventually leads to the remodeling of the cell wall structure. Our results revealed that in response to ethanol stress, the high-osmolarity glycerol (HOG) pathway plays a collaborative role with the CWI pathway in inducing cell wall remodeling via the upregulation of specific cell wall biosynthesis genes such as the CRH1 gene. Furthermore, the substantial expression of CWI-responsive genes is also triggered by external hyperosmolarity, suggesting that the adaptive changes in the cell wall are crucial for protecting yeast cells against not only cell wall stress but also osmotic stress. On the other hand, the cell wall stress-inducing agent calcofluor white has no effect on promoting the expression of GPD1, a major target gene of the HOG pathway. Collectively, these findings suggest that during ethanol stress, the CWI and HOG pathways collaboratively regulate the transcription of specific cell wall biosynthesis genes, thereby leading to adaptive changes in the cell wall. IMPORTANCE The budding yeast Saccharomyces cerevisiae has been widely used in industrial fermentations, including the production of alcoholic beverages and bioethanol. During fermentation, an increased ethanol concentration is the main stress that affects yeast metabolism and inhibits ethanol production. This work presents evidence that in response to ethanol stress, both CWI and HOG pathways cooperate to control the expression of cell wall-remodeling genes in order to build the adaptive strength of the cell wall. These findings will contribute to a better understanding of the molecular mechanisms underlying adaptive responses and tolerance of yeast to ethanol stress, which is essential for successful engineering of yeast strains for improved ethanol tolerance.


Sign in / Sign up

Export Citation Format

Share Document