scholarly journals The N-DRC forms a conserved biochemical complex that maintains outer doublet alignment and limits microtubule sliding in motile axonemes

2013 ◽  
Vol 24 (8) ◽  
pp. 1134-1152 ◽  
Author(s):  
Raqual Bower ◽  
Douglas Tritschler ◽  
Kristyn VanderWaal ◽  
Catherine A. Perrone ◽  
Joshua Mueller ◽  
...  

The nexin–dynein regulatory complex (N-DRC) is proposed to coordinate dynein arm activity and interconnect doublet microtubules. Here we identify a conserved region in DRC4 critical for assembly of the N-DRC into the axoneme. At least 10 subunits associate with DRC4 to form a discrete complex distinct from other axonemal substructures. Transformation of drc4 mutants with epitope-tagged DRC4 rescues the motility defects and restores assembly of missing DRC subunits and associated inner-arm dyneins. Four new DRC subunits contain calcium-signaling motifs and/or AAA domains and are nearly ubiquitous in species with motile cilia. However, drc mutants are motile and maintain the 9 + 2 organization of the axoneme. To evaluate the function of the N-DRC, we analyzed ATP-induced reactivation of isolated axonemes. Rather than the reactivated bending observed with wild-type axonemes, ATP addition to drc-mutant axonemes resulted in splaying of doublets in the distal region, followed by oscillatory bending between pairs of doublets. Thus the N-DRC provides some but not all of the resistance to microtubule sliding and helps to maintain optimal alignment of doublets for productive flagellar motility. These findings provide new insights into the mechanisms that regulate motility and further highlight the importance of the proximal region of the axoneme in generating flagellar bending.

2012 ◽  
Vol 23 (16) ◽  
pp. 3143-3155 ◽  
Author(s):  
Thomas Heuser ◽  
Erin E. Dymek ◽  
Jianfeng Lin ◽  
Elizabeth F. Smith ◽  
Daniela Nicastro

Motile cilia and flagella are highly conserved organelles that play important roles in human health and development. We recently discovered a calmodulin- and spoke-associ­ated complex (CSC) that is required for wild-type motility and for the stable assembly of a subset of radial spokes. Using cryo–electron tomography, we present the first structure-based localization model of the CSC. Chlamydomonas flagella have two full-length radial spokes, RS1 and RS2, and a shorter RS3 homologue, the RS3 stand-in (RS3S). Using newly developed techniques for analyzing samples with structural heterogeneity, we demonstrate that the CSC connects three major axonemal complexes involved in dynein regulation: RS2, the nexin–dynein regulatory complex (N-DRC), and RS3S. These results provide insights into how signals from the radial spokes may be transmitted to the N-DRC and ultimately to the dynein motors. Our results also indicate that although structurally very similar, RS1 and RS2 likely serve different functions in regulating flagellar motility.


2015 ◽  
Vol 26 (15) ◽  
pp. 2788-2800 ◽  
Author(s):  
Junya Awata ◽  
Kangkang Song ◽  
Jianfeng Lin ◽  
Stephen M. King ◽  
Michael J. Sanderson ◽  
...  

The nexin-dynein regulatory complex (N-DRC), which is a major hub for the control of flagellar motility, contains at least 11 different subunits. A major challenge is to determine the location and function of each of these subunits within the N-DRC. We characterized a Chlamydomonas mutant defective in the N-DRC subunit DRC3. Of the known N-DRC subunits, the drc3 mutant is missing only DRC3. Like other N-DRC mutants, the drc3 mutant has a defect in flagellar motility. However, in contrast to other mutations affecting the N-DRC, drc3 does not suppress flagellar paralysis caused by loss of radial spokes. Cryo–electron tomography revealed that the drc3 mutant lacks a portion of the N-DRC linker domain, including the L1 protrusion, part of the distal lobe, and the connection between these two structures, thus localizing DRC3 to this part of the N-DRC. This and additional considerations enable us to assign DRC3 to the L1 protrusion. Because the L1 protrusion is the only non-dynein structure in contact with the dynein g motor domain in wild-type axonemes and this is the only N-DRC–dynein connection missing in the drc3 mutant, we conclude that DRC3 interacts with dynein g to regulate flagellar waveform.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1848-1848
Author(s):  
Jun Yamanouchi ◽  
Takaaki Hato ◽  
Hiroshi Fujiwara ◽  
Yoshihiro Yakushijin ◽  
Masaki Yasukawa

Abstract Integrin αIIbβ3 exists in a low affinity state in resting platelets and requires activation for high affinity binding with soluble ligands. Activation of αIIbβ3 is tightly linked to structural rearrangements of the αIIbβ3 molecule that is initiated from the cytoplasmic tails of the αIIb and β3 subunits. The β3 membrane-distal region has been shown to interact with many signaling and cytoskeletal molecules, and considered as a trigger point of integrin activation. The interaction of the β3 tail with a cytoplasmic protein, talin, largely contributes to integrin activation. In view of the link between integrin activation and allosteric structural rearrangements of integrins, one would expect that structural changes in the β3 membrane-distal region containing binding sites for intracellular proteins would be relayed to the membrane-proximal region, leading to αIIbβ3 activation. However, there has been no evidence that structural rearrangement of the β3 membrane-distal region is directly linked to integrin activation. No activating mutation has so far been reported in the β3 membrane-distal region despite numerous reports of loss-of-function mutants in this region. In this context, a previously reported αIIbβ3 mutant in which the β3 tail was replaced by the β1 tail was noteworthy. This chimeric integrin, αIIbβ3/β1, was constitutively active. Because the β1 and β3 subunits have relatively high sequence homology in their membrane-proximal regions, we reasoned that the residues differing between the β1 and β3 membrane-distal regions may be responsible for αIIbβ3 activation. To identify such residues, we produced 13 αIIbβ3 mutants in which the individual or group residues in the β3 tail were substituted with the corresponding β1 tail residues. The αIIbβ3 mutants were expressed on the surface of CHO cells by cotransfection of mutant β3 and wild-type αIIb cDNAs, and were tested for binding of fibrinogen and PAC1, a ligand-mimetic anti-αIIbβ3 antibody. Among them, only β3I719M and E749S mutants bound significant PAC1 and fibrinogen binding without any stimulation and the RGDS peptide abolished binding of these ligands, indicating a constitutively active state. The similar effect was observed with I719A and E749A mutants. Moreover, the I719M/E749S double mutant showed more PAC1 binding than the single mutants, reaching the same ligand binding activity as αIIbβ3/β1. These β3 mutations also induced αVβ3 activation. Conversely, substitution of M719 or S749 in the β1 tail with the corresponding β3 tail residue (M719I or S749E) inhibited αIIbβ3/β1 activation, and the M719I/S749E double mutant inhibited ligand binding to a level comparable with that of the wild-type αIIbβ3. Knock down of talin by short hairpin RNA inhibited the I719M- and E749S-induced αIIbβ3 activation, indicating talin-mediated activation of mutant integrins. Since I719 is located at the β3 membrane-proximal region, it is likely that the I719 mutation disrupts the well-known membrane-proximal clasp to maintain integrins at a low affinity state. On the other hand, E749 is located at the β3 membrane-distal region. This result provides experimental evidence that structural perturbation of the β3 membrane-distal region is linked to integrin activation. Moreover, our result showed that the mutational effects of the membrane-proximal I719 and the membrane-distal E749 residues were additive and talin-dependent, suggesting that the β3 membrane-proximal and –distal regions cooperatively regulate talin-mediated αIIbβ3 activation. This finding is consistent with a recent model of talin-induced αIIbβ3 activation in which talin cooperatively interacts with the β3 membrane-proximal and distal regions.


2002 ◽  
Vol 13 (9) ◽  
pp. 3303-3313 ◽  
Author(s):  
Elizabeth F. Smith

Ciliary and flagellar motility is regulated by changes in intraflagellar calcium. However, the molecular mechanism by which calcium controls motility is unknown. We tested the hypothesis that calcium regulates motility by controlling dynein-driven microtubule sliding and that the central pair and radial spokes are involved in this regulation. We isolated axonemes from Chlamydomonasmutants and measured microtubule sliding velocity in buffers containing 1 mM ATP and various concentrations of calcium. In buffers with pCa > 8, microtubule sliding velocity in axonemes lacking the central apparatus (pf18 and pf15) was reduced compared with that of wild-type axonemes. In contrast, at pCa4, dynein activity in pf18 and pf15axonemes was restored to wild-type level. The calcium-induced increase in dynein activity in pf18 axonemes was inhibited by antagonists of calmodulin and calmodulin-dependent kinase II. Axonemes lacking the C1 central tubule (pf16) or lacking radial spoke components (pf14 and pf17) do not exhibit calcium-induced increase in dynein activity in pCa4 buffer. We conclude that calcium regulation of flagellar motility involves regulation of dynein-driven microtubule sliding, that calmodulin and calmodulin-dependent kinase II may mediate the calcium signal, and that the central apparatus and radial spokes are key components of the calcium signaling pathway.


2005 ◽  
Vol 19 (9) ◽  
pp. 2320-2334 ◽  
Author(s):  
Amena Archer ◽  
Dominique Sauvaget ◽  
Valérie Chauffeton ◽  
Pierre-Etienne Bouchet ◽  
Jean Chambaz ◽  
...  

Abstract In the small intestine, the expression of the apolipoprotein (apo) C-III and A-IV genes is restricted to the enterocytes of the villi. We have previously shown that, in transgenic mice, specific expression of the human apo C-III requires a hormone-responsive element (HRE) located in the distal region of the human apoA-IV promoter. This HRE binds the hepatic nuclear factors (HNF)-4α and γ. Here, intraduodenal injections in mice and infections of human enterocytic Caco-2/TC7 cells with an adenovirus expressing a dominant-negative form of HNF-4α repress the expression of the apoA-IV gene, demonstrating that HNF-4 controls the apoA-IV gene expression in enterocytes. We show that HNF-4α and γ functionally interact with a second HRE present in the proximal region of the human apoA-IV promoter. New sets of transgenic mice expressing mutated forms of the promoter, combined with the human apo C-III enhancer, demonstrate that, whereas a single HRE is sufficient to reproduce the physiological cephalo-caudal gradient of apoA-IV gene expression, both HREs are required for expression that is restricted to villi. The combination of multiple HREs may specifically recruit regulatory complexes associating HNF-4 and either coactivators in villi or corepressors in crypts.


2005 ◽  
Vol 19 (1) ◽  
pp. 163-174 ◽  
Author(s):  
Amandine Gautier-Stein ◽  
Gilles Mithieux ◽  
Fabienne Rajas

Abstract Glucose-6-phosphatase (Glc6Pase) is the last enzyme of gluconeogenesis and is only expressed in the liver, kidney, and small intestine. In these tissues, the mRNA and its activity are increased when cAMP levels increased (e.g. in fasting or diabetes). We first report that a proximal region (within −200 bp relative to the transcription start site) and a distal region (−694/−500 bp) are both required for a potent cAMP and a protein kinase A (PKA) responsiveness of the Glc6Pase promoter. Using different molecular approaches, we demonstrate that hepatocyte nuclear factor (HNF4α), CAAT/ enhancer-binding protein-α (C/EBPα), C/EBPβ, and cAMP response element-binding protein (CREB) are involved in the potentiated PKA responsiveness: in the distal region, via one HNF4α- and one C/EBP-binding sites, and in the proximal region, via two HNF4α and two CREB-binding sites. We also show that HNF4α, C/EBPα, and C/EBPβ are constitutively bound to the endogenous Glc6Pase gene, whereas CREB and CREB-binding protein (CBP) will be bound to the gene upon stimulation by cAMP. These data strongly suggest that the cAMP responsiveness of the Glc6Pase promoter requires a tight cooperation between a proximal and a distal region, which depends on the presence of several HNF4α-, C/EBP-, and CREB-binding sites, therefore involving an intricate association of hepatic and ubiquitous transcription factors.


2009 ◽  
Vol 20 (13) ◽  
pp. 3055-3063 ◽  
Author(s):  
Raqual Bower ◽  
Kristyn VanderWaal ◽  
Eileen O'Toole ◽  
Laura Fox ◽  
Catherine Perrone ◽  
...  

To understand the mechanisms that regulate the assembly and activity of flagellar dyneins, we focused on the I1 inner arm dynein (dynein f) and a null allele, bop5-2, defective in the gene encoding the IC138 phosphoprotein subunit. I1 dynein assembles in bop5-2 axonemes but lacks at least four subunits: IC138, IC97, LC7b, and flagellar-associated protein (FAP) 120—defining a new I1 subcomplex. Electron microscopy and image averaging revealed a defect at the base of the I1 dynein, in between radial spoke 1 and the outer dynein arms. Microtubule sliding velocities also are reduced. Transformation with wild-type IC138 restores assembly of the IC138 subcomplex and rescues microtubule sliding. These observations suggest that the IC138 subcomplex is required to coordinate I1 motor activity. To further test this hypothesis, we analyzed microtubule sliding in radial spoke and double mutant strains. The results reveal an essential role for the IC138 subcomplex in the regulation of I1 activity by the radial spoke/phosphorylation pathway.


1990 ◽  
Vol 10 (9) ◽  
pp. 4690-4700
Author(s):  
B Peers ◽  
M L Voz ◽  
P Monget ◽  
M Mathy-Hartert ◽  
M Berwaer ◽  
...  

We have performed transfection and DNase I footprinting experiments to investigate pituitary-specific expression of the human prolactin (hPRL) gene. When fused to the chloramphenicol acetyltransferase (CAT) reporter gene, 5,000 base pairs of the 5'-flanking sequences of the hPRL gene were able to drive high cat gene expression in prolactin-expressing GH3B6 cells specifically. Deletion analysis indicated that this pituitary-specific expression was controlled by three main positive regulatory regions. The first was located just upstream from the TATA box between coordinates -40 and -250 (proximal region). We have previously shown that three motifs of this region bind the pituitary-specific Pit-1 factor. The second positive region was located in the vicinity of coordinates -1300 to -1750 (distal region). DNase I footprinting assays revealed that eight DNA motifs of this distal region bound protein Pit-1 and that two other motifs were recognized by ubiquitous factors, one of which seems to belong to the AP-1 (jun) family. The third positive region was located further upstream, between -3500 and -5000 (superdistal region). This region appears to enhance transcription only in the presence of the distal region.


1991 ◽  
Vol 156 (1) ◽  
pp. 63-80 ◽  
Author(s):  
C. Shingyoji ◽  
I. R. Gibbons ◽  
A. Murakami ◽  
K. Takahashi

The heads of live spermatozoa of the sea urchin Hemicentrotus pulcherrimus were held by suction in the tip of a micropipette mounted on a piezoelectric device and vibrated either laterally or axially with respect to the head axis. Within certain ranges of frequency and amplitude, lateral vibration of the pipette brought about a stable rhythmic beating of the flagella in the plane of vibration, with the beat frequency synchronized to the frequency of vibration [Gibbons et al. (1987), Nature 325, 351–352]. The sperm flagella, with an average natural beat frequency of 48 Hz, showed stable beating synchronized to the pipette vibration over a range of 35–90 Hz when the amplitude of vibration was about 20 microns or greater. Vibration frequencies below this range caused instability of the beat plane, often associated with irregularities in beat frequency. Frequencies above about 90 Hz caused irregular asymmetrical flagellar beating with a marked decrease in amplitude of the propagated bends and a skewing of the flagellar axis towards one side; the flagella often stopped in a cane shape. In flagella that were beating stably under imposed vibration, the wavelength was reduced at higher frequencies and increased at lower frequencies. When the beat frequency was equal to or lower than the natural beat frequency, the apparent time-averaged sliding velocity of axonemal microtubules, obtained as twice the product of frequency and bend angle, decreased with beat frequency in both the proximal and distal regions of the flagella. However, at vibration frequencies above the natural beat frequency, the sliding velocity increased with frequency only in the proximal region of the flagellum and remained essentially unchanged in more distal regions. This apparent limit to the velocity of sliding in the distal region may represent an inherent limit in the intrinsic velocity of active sliding, while the faster sliding observed in the proximal region may be a result of passive sliding or elastic distortion of the microtubules induced by the additional energy supplied by the vibrating pipette. Axial vibration with frequencies either close to or twice the natural beat frequency induced cyclic changes in the waveform, compressing and expanding the bends in the proximal region, but did not affect bends in the distal region or alter the beat frequency.


Metals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 840 ◽  
Author(s):  
Roohollah Milimonfared ◽  
Reza Oskouei ◽  
Mark Taylor ◽  
Lucian Solomon

Metallic taper junctions of modular total hip replacement implants are analysed for corrosion damage using visual scoring based on different granularity levels that span from analysing the taper holistically to dividing the taper into several distinct zones. This study aims to objectively explore the spatial distribution and the severity of corrosion damage onto the surface of metallic stem tapers. An ordinal logistic regression model was developed to find the odds of receiving a higher score at eight distinct zones of 137 retrieved stem tapers. A method to find the order of damage severity across the eight zones is introduced based on an overall test of statistical significance. The findings show that corrosion at the stem tapers occurred more commonly in the distal region in comparison with the proximal region. Also, the medial distal zone was found to possess the most severe corrosion damage among all the studied eight zones.


Sign in / Sign up

Export Citation Format

Share Document