scholarly journals NuMA localization, stability, and function in spindle orientation involve 4.1 and Cdk1 interactions

2013 ◽  
Vol 24 (23) ◽  
pp. 3651-3662 ◽  
Author(s):  
Lindsey Seldin ◽  
Nicholas D. Poulson ◽  
Henry P. Foote ◽  
Terry Lechler

The epidermis is a multilayered epithelium that requires asymmetric divisions for stratification. A conserved cortical protein complex, including LGN, nuclear mitotic apparatus (NuMA), and dynein/dynactin, plays a key role in establishing proper spindle orientation during asymmetric divisions. The requirements for the cortical recruitment of these proteins, however, remain unclear. In this work, we show that NuMA is required to recruit dynactin to the cell cortex of keratinocytes. NuMA's cortical recruitment requires LGN; however, LGN interactions are not sufficient for this localization. Using fluorescence recovery after photobleaching, we find that the 4.1-binding domain of NuMA is important for stabilizing its interaction with the cell cortex. This is functionally important, as loss of 4.1/NuMA interaction results in spindle orientation defects, using two distinct assays. Furthermore, we observe an increase in cortical NuMA localization as cells enter anaphase. Inhibition of Cdk1 or mutation of a single residue in NuMA mimics this effect. NuMA's anaphase localization is independent of LGN and 4.1 interactions, revealing two distinct mechanisms responsible for NuMA cortical recruitment at different stages of mitosis. This work highlights the complexity of NuMA localization and reveals the importance of NuMA cortical stability for productive force generation during spindle orientation.

2013 ◽  
Vol 24 (7) ◽  
pp. 901-913 ◽  
Author(s):  
Zhen Zheng ◽  
Qingwen Wan ◽  
Jing Liu ◽  
Huabin Zhu ◽  
Xiaogang Chu ◽  
...  

Spindle positioning is believed to be governed by the interaction between astral microtubules and the cell cortex and involve cortically anchored motor protein dynein. How dynein is recruited to and regulated at the cell cortex to generate forces on astral microtubules is not clear. Here we show that mammalian homologue of Drosophila Pins (Partner of Inscuteable) (LGN), a Gαi-binding protein that is critical for spindle positioning in different systems, associates with cytoplasmic dynein heavy chain (DYNC1H1) in a Gαi-regulated manner. LGN is required for the mitotic cortical localization of DYNC1H1, which, in turn, also modulates the cortical accumulation of LGN. Using fluorescence recovery after photobleaching analysis, we show that cortical LGN is dynamic and the turnover of LGN relies, at least partially, on astral microtubules and DYNC1H1. We provide evidence for dynein- and astral microtubule–mediated transport of Gαi/LGN/nuclear mitotic apparatus (NuMA) complex from cell cortex to spindle poles and show that actin filaments counteract such transport by maintaining Gαi/LGN/NuMA and dynein at the cell cortex. Our results indicate that astral microtubules are required for establishing bipolar, symmetrical cortical LGN distribution during metaphase. We propose that regulated cortical release and transport of LGN complex along astral microtubules may contribute to spindle positioning in mammalian cells.


2011 ◽  
Vol 195 (3) ◽  
pp. 369-376 ◽  
Author(s):  
Brett Wee ◽  
Christopher A. Johnston ◽  
Kenneth E. Prehoda ◽  
Chris Q. Doe

Regulated spindle orientation maintains epithelial tissue integrity and stem cell asymmetric cell division. In Drosophila melanogaster neural stem cells (neuroblasts), the scaffolding protein Canoe (Afadin/Af-6 in mammals) regulates spindle orientation, but its protein interaction partners and mechanism of action are unknown. In this paper, we use our recently developed induced cell polarity system to dissect the molecular mechanism of Canoe-mediated spindle orientation. We show that a previously uncharacterized portion of Canoe directly binds the Partner of Inscuteable (Pins) tetratricopeptide repeat (TPR) domain. The Canoe–PinsTPR interaction recruits Canoe to the cell cortex and is required for activation of the PinsTPR-Mud (nuclear mitotic apparatus in mammals) spindle orientation pathway. We show that the Canoe Ras-association (RA) domains directly bind RanGTP and that both the CanoeRA domains and RanGTP are required to recruit Mud to the cortex and activate the Pins/Mud/dynein spindle orientation pathway.


2014 ◽  
Vol 205 (6) ◽  
pp. 791-799 ◽  
Author(s):  
Mickael Machicoane ◽  
Cristina A. de Frutos ◽  
Jenny Fink ◽  
Murielle Rocancourt ◽  
Yannis Lombardi ◽  
...  

Mitotic spindle orientation relies on a complex dialog between the spindle microtubules and the cell cortex, in which F-actin has been recently implicated. Here, we report that the membrane–actin linkers ezrin/radixin/moesin (ERMs) are strongly and directly activated by the Ste20-like kinase at mitotic entry in mammalian cells. Using microfabricated adhesive substrates to control the axis of cell division, we found that the activation of ERMs plays a key role in guiding the orientation of the mitotic spindle. Accordingly, impairing ERM activation in apical progenitors of the mouse embryonic neocortex severely disturbed spindle orientation in vivo. At the molecular level, ERM activation promotes the polarized association at the mitotic cortex of leucine-glycine-asparagine repeat protein (LGN) and nuclear mitotic apparatus (NuMA) protein, two essential factors for spindle orientation. We propose that activated ERMs, together with Gαi, are critical for the correct localization of LGN–NuMA force generator complexes and hence for proper spindle orientation.


1999 ◽  
Vol 5 (S2) ◽  
pp. 1286-1287
Author(s):  
Heide Schatten ◽  
Christopher N. Hueser ◽  
Amitabha Chakrabarti

The formation of abnormal mitosis associated with cancer has been intriguing for many decades. While microtubules had been the focus of previous studies, recent research has focused on centrosomes, microtubule organizing centers which organize the mitotic apparatus during cell division. During normal mitosis centrosomes form two poles but in cancer, centrosomes can form three, four, or more poles, and organize tripolar, quadripolar, and multipolar mitoses, respectively. This has severe consequences for genomic stability because chromosomes are separated unequally to three, four, or more poles. This can result in aneuploidy and gene amplifications with multiple defects in cellular regulation. It can result in malignancy that is accompanied by cell cycle imbalances and abnormal cell proliferation. While radiation and chemical agents are known to damage DNA and can lead to cell cycle abnormalities, the damage of centrosome structure leading to abnormal mitosis deserves also consideration.


Development ◽  
1997 ◽  
Vol 124 (13) ◽  
pp. 2645-2657 ◽  
Author(s):  
M. Spielman ◽  
D. Preuss ◽  
F.L. Li ◽  
W.E. Browne ◽  
R.J. Scott ◽  
...  

In flowering plants, male meiosis occurs in the microsporocyte to produce four microspores, each of which develops into a pollen grain. Here we describe four mutant alleles of TETRASPORE (TES), a gene essential for microsporocyte cytokinesis in Arabidopsis thaliana. Following failure of male meiotic cytokinesis in tes mutants, all four microspore nuclei remain within the same cytoplasm, with some completing their developmental programmes to form functional pollen nuclei. Both of the mitotic divisions seen in normal pollen development take place in tes mutants, including the asymmetric division required for the differentiation of gametes; some tes grains perform multiple asymmetric divisions in the same cytoplasm. tes pollen shows a variety of abnormalities subsequent to the cytokinetic defect, including fusion of nuclei, formation of ectopic internal walls, and disruptions to external wall patterning. In addition, ovules fertilized by tes pollen often abort, possibly because of excess paternal genomes in the endosperm. Thus tes mutants not only reveal a gene specific to male meiosis, but aid investigation of a wide range of processes in pollen development and function.


2001 ◽  
Vol 114 (23) ◽  
pp. 4319-4328
Author(s):  
Sherryl R. Bisgrove ◽  
Darryl L. Kropf

The first cell division in zygotes of the fucoid brown alga Pelvetia compressa is asymmetric and we are interested in the mechanism controlling the alignment of this division. Since the division plane bisects the mitotic apparatus, we investigated the timing and mechanism of spindle alignments. Centrosomes, which give rise to spindle poles, aligned with the growth axis in two phases – a premetaphase rotation of the nucleus and centrosomes followed by a postmetaphase alignment that coincided with the separation of the mitotic spindle poles during anaphase and telophase. The roles of the cytoskeleton and cell cortex in the two phases of alignment were analyzed by treatment with pharmacological agents. Treatments that disrupted cytoskeleton or perturbed cortical adhesions inhibited pre-metaphase alignment and we propose that this rotational alignment is effected by microtubules anchored at cortical adhesion sites. Postmetaphase alignment was not affected by any of the treatments tested, and may be dependent on asymmetric cell morphology.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Hui Ye ◽  
Shamsideen A Ojelade ◽  
David Li-Kroeger ◽  
Zhongyuan Zuo ◽  
Liping Wang ◽  
...  

Retromer, including Vps35, Vps26, and Vps29, is a protein complex responsible for recycling proteins within the endolysosomal pathway. Although implicated in both Parkinson’s and Alzheimer’s disease, our understanding of retromer function in the adult brain remains limited, in part because Vps35 and Vps26 are essential for development. In Drosophila, we find that Vps29 is dispensable for embryogenesis but required for retromer function in aging adults, including for synaptic transmission, survival, and locomotion. Unexpectedly, in Vps29 mutants, Vps35 and Vps26 proteins are normally expressed and associated, but retromer is mislocalized from neuropil to soma with the Rab7 GTPase. Further, Vps29 phenotypes are suppressed by reducing Rab7 or overexpressing the GTPase activating protein, TBC1D5. With aging, retromer insufficiency triggers progressive endolysosomal dysfunction, with ultrastructural evidence of impaired substrate clearance and lysosomal stress. Our results reveal the role of Vps29 in retromer localization and function, highlighting requirements for brain homeostasis in aging.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Travis A Hage ◽  
Yujie Sun ◽  
Zayd M Khaliq

Little is known about the density and function of dendritic spines on midbrain dopamine neurons, or the relative contribution of spine and shaft synapses to excitability. Using Ca2+ imaging, glutamate uncaging, fluorescence recovery after photobleaching and transgenic mice expressing labeled PSD-95, we comparatively analyzed electrical and Ca2+ signaling in spines and shaft synapses of dopamine neurons. Dendritic spines were present on dopaminergic neurons at low densities in live and fixed tissue. Uncaging-evoked potential amplitudes correlated inversely with spine length but positively with the presence of PSD-95. Spine Ca2+ signals were less sensitive to hyperpolarization than shaft synapses, suggesting amplification of spine head voltages. Lastly, activating spines during pacemaking, we observed an unexpected enhancement of spine Ca2+ midway throughout the spike cycle, likely involving recruitment of NMDA receptors and voltage-gated conductances. These results demonstrate functionality of spines in dopamine neurons and reveal a novel modulation of spine Ca2+ signaling during pacemaking.


Sign in / Sign up

Export Citation Format

Share Document