scholarly journals Actomyosin sliding is attenuated in contractile biomimetic cortices

2014 ◽  
Vol 25 (12) ◽  
pp. 1845-1853 ◽  
Author(s):  
Michael Murrell ◽  
Margaret L. Gardel

Myosin II motors embedded within the actin cortex generate contractile forces to modulate cell shape in essential behaviors, including polarization, migration, and division. In sarcomeres, myosin II–mediated sliding of antiparallel F-actin is tightly coupled to myofibril contraction. By contrast, cortical F-actin is highly disordered in polarity, orientation, and length. How the disordered nature of the actin cortex affects actin and myosin movements and resultant contraction is unknown. Here we reconstitute a model cortex in vitro to monitor the relative movements of actin and myosin under conditions that promote or abrogate network contraction. In weakly contractile networks, myosin can translocate large distances across stationary F-actin. By contrast, the extent of relative actomyosin sliding is attenuated during contraction. Thus actomyosin sliding efficiently drives contraction in actomyosin networks despite the high degree of disorder. These results are consistent with the nominal degree of relative actomyosin movement observed in actomyosin assemblies in nonmuscle cells.

2018 ◽  
Author(s):  
Sonal ◽  
Kristina A. Ganzinger ◽  
Sven K. Vogel ◽  
Jonas Mücksch ◽  
Philipp Blumhardt ◽  
...  

ABSTRACTDynamic reorganization of the actomyosin cytoskeleton allows a fine-tuning of cell shape that is vital to many cellular functions. It is well established that myosin-II motors generate the forces required for remodeling the cell surface by imparting contractility to actin networks. An additional, less understood, role of myosin-II in cytoskeletal dynamics is believed to be in the regulation of actin turnover; it has been proposed that myosin activity increases actin turnover in various cellular contexts, presumably by contributing to disassembly. In vitro reconstitution of actomyosin networks has confirmed the role of myosin in actin network disassembly, but factors such as diffusional constraints and the use of stabilized filaments have thus far limited the observation of myosin-assisted actin turnover in these networks. Here, we present the reconstitution of a minimal dynamic actin cortex where actin polymerization is catalyzed on the membrane in the presence of myosin-II activity. We demonstrate that myosin activity leads to disassembly and redistribution in this simplified cortex. Consequently, a new dynamic steady state emerges in which actin filaments undergo constant turnover. Our findings suggest a multi-faceted role of myosin-II in fast remodeling of the eukaryotic actin cortex.


1995 ◽  
Vol 108 (1) ◽  
pp. 387-393 ◽  
Author(s):  
P.Y. Jay ◽  
P.A. Pham ◽  
S.A. Wong ◽  
E.L. Elson

Myosin II mutant Dictyostelium amoebae crawl more slowly than wild-type cells. Thus, myosin II must contribute to amoeboid locomotion. We propose that contractile forces generated by myosin II help the cell's rear edge to detach from the substratum and retract, allowing the cell to continue forward. To test this hypothesis, we measured the speed of wild-type and myosin II null mutant Dictyostelium cells on surfaces of varying adhesivity. As substratum adhesivity increased, the speed of myosin II null mutant cells decreased substantially compared to wild-type cells, suggesting that the mutant is less able to retract from sticky surfaces. Furthermore, interference reflection microscopy revealed a myosin-II-dependent contraction in wild-type but not null mutant cells that is consistent with a balance of adhesive and contractile forces in retraction. Although myosin II null mutant cells have a defect in retraction, pseudopod extension does not cause the cells to become elongated on sticky surfaces. This suggests a mechanism, based possibly on cytoskeletal tension, for regulating cell shape in locomotion. The tension would result from the transmission of tractional forces through the cytoskeletal network, providing the myosin II null mutant with a limited means of retraction and cell division on a surface.


2021 ◽  
Vol 22 (6) ◽  
pp. 3018
Author(s):  
Biane Philadelpho ◽  
Victória Souza ◽  
Fabiani Souza ◽  
Johnnie Santos ◽  
Fabiana Batista ◽  
...  

Adzuki seed β-vignin, a vicilin-like globulin, has proven to exert various health-promoting biological activities, notably in cardiovascular health. A simple scalable enrichment procedure of this protein for further nutritional and functional studies is crucial. In this study, a simplified chromatography-independent protein fractionation procedure has been optimized and described. The electrophoretic analysis showed a high degree of homogeneity of β-vignin isolate. Furthermore, the molecular features of the purified protein were investigated. The adzuki bean β-vignin was found to have a native size of 146 kDa, and the molecular weight determined was consistent with a trimeric structure. These were identified in two main polypeptide chains (masses of 56–54 kDa) that are glycosylated polypeptides with metal binding capacity, and one minor polypeptide chain with a mass 37 kDa, wherein these features are absent. The in vitro analysis showed a high degree of digestibility of the protein (92%) and potential anti-inflammatory capacity. The results lay the basis not only for further investigation of the health-promoting properties of the adzuki bean β-vignin protein, but also for a possible application as nutraceutical molecule.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 413
Author(s):  
Saad Saeed AlShahrani ◽  
Mana’a Saleh AlAbbas ◽  
Isadora Martini Garcia ◽  
Maha Ibrahim AlGhannam ◽  
Muath Abdulrahman AlRuwaili ◽  
...  

This review aimed to assess the antimicrobial effects of different antibacterial agents/compounds incorporated in resin-based dental sealants. Four databases (PubMed, MEDLINE, Web of Science and Scopus) were searched. From the 8052 records retrieved, 275 records were considered eligible for full-text screening. Nineteen studies met the inclusion criteria. Data extraction and quality assessment was performed by two independent reviewers. Six of the nineteen included studies were judged to have low risk of bias, and the rest had medium risk of bias. Compounds and particles such as zinc, tin, Selenium, chitosan, chlorhexidine, fluoride and methyl methacrylate were found to be effective in reducing the colony-forming unit counts, producing inhibition zones, reducing the optical density, reducing the metabolic activities, reducing the lactic acid and polysaccharide production and neutralizing the pH when they are added to the resin-based dental sealants. In addition, some studies showed that the antibacterial effect was not significantly different after 2 weeks, 2 months and 6 months aging in distilled water or phosphate-buffered saline. In conclusion, studies have confirmed the effectiveness of adding antibacterial agents/compounds to dental sealants. However, we should consider that these results are based on laboratory studies with a high degree of heterogeneity.


1976 ◽  
Vol 230 (4) ◽  
pp. 1037-1041 ◽  
Author(s):  
DR Strome ◽  
RL Clancy ◽  
NC Gonzalez

Isolated rabbit hearts were perfused with rabbit red cells suspended in Ringer solution. A small volume of perfusate was recirculated for 10 min at Pco2 of 33.4 +/- 0.9 or 150.8 +/- 7.5 mmHg. Hypercapnia resulted in an increase in perfusate HCO3- concentration that was smaller than that observed when isolated perfusate was equilibrated in vitro with the same CO2 tensions (delta HCO-3e = 1.6 mM, P less than 0.01). This difference is consistent with a net movement of HCO3- into or H+ out of the mycardial cell, and cannot be accounted for by dilution of HCO3- in the myocardial interstitium. Recirculation of perfusate through the coronary circulation at normal Pco2 for two consecutive 10-min periods was not followed by changes in perfusate HCO3- concentration. A high degree of correlation (r = 0.81) was observed between intracellular HCO-3e concentration and the corresponding delta HCO-3e in individual experiments. The results suggest that transmembrane exchange of H+ or HCO3- is a buffer mechanism for CO2 in the myocardial cell.


2003 ◽  
Vol 78 (2) ◽  
pp. 109-117 ◽  
Author(s):  
He Gruber ◽  
Ja Ingram ◽  
K Leslie ◽  
Hj Norton ◽  
En Hanley Jr

2004 ◽  
Vol 24 (7) ◽  
pp. 2932-2943 ◽  
Author(s):  
Hailing Cheng ◽  
Xiaoyuan He ◽  
Claire Moore

ABSTRACT Swd2, an essential WD repeat protein in Saccharomyces cerevisiae, is a component of two very different complexes: the cleavage and polyadenylation factor CPF and the Set1 methylase, which modifies lysine 4 of histone H3 (H3-K4). It was not known if Swd2 is important for the function of either of these entities. We show here that, in extract from cells depleted of Swd2, cleavage and polyadenylation of the mRNA precursor in vitro are completely normal. However, temperature-sensitive mutations or depletion of Swd2 causes termination defects in some genes transcribed by RNA polymerase II. Overexpression of Ref2, a protein previously implicated in snoRNA 3′ end formation and Swd2 recruitment to CPF, can rescue the growth and termination defects, indicating a functional interaction between the two proteins. Some swd2 mutations also significantly decrease global H3-K4 methylation and cause other phenotypes associated with loss of this chromatin modification, such as loss of telomere silencing, hydroxyurea sensitivity, and alterations in repression of INO1 transcription. Even though the two Swd2-containing complexes are both localized to actively transcribed genes, the allele specificities of swd2 defects suggest that the functions of Swd2 in mediating RNA polymerase II termination and H3-K4 methylation are not tightly coupled.


Endocrinology ◽  
2007 ◽  
Vol 148 (7) ◽  
pp. 3176-3184 ◽  
Author(s):  
Ivanna Ihnatovych ◽  
WenYang Hu ◽  
Jody L. Martin ◽  
Asgerally T. Fazleabas ◽  
Primal de Lanerolle ◽  
...  

Differentiation of stromal cells into decidual cells, which is critical to successful pregnancy, represents a complex transformation requiring changes in cytoskeletal architecture. We demonstrate that in vitro differentiation of human uterine fibroblasts into decidual cells includes down-regulation of α-smooth muscle actin and β-tubulin, phosphorylation of focal adhesion kinase, and redistribution of vinculin. This is accompanied by varied adhesion to fibronectin and a modified ability to migrate. Cytoskeletal organization is determined primarily by actin-myosin II interactions governed by the phosphorylation of myosin light chain (MLC20). Decidualization induced by cAMP [with estradiol-17β (E) and medroxyprogesterone acetate (P)] results in a 40% decrease in MLC20 phosphorylation and a 55% decline in the long (214 kDa) form of myosin light-chain kinase (MLCK). Destabilization of the cytoskeleton by inhibitors of MLCK (ML-7) or myosin II ATPase (blebbistatin) accelerates decidualization induced by cAMP (with E and P) but inhibits decidualization induced by IL-1β (with E and P). Adenoviral infection of human uterine fibroblast cells with a constitutively active form of MLCK followed by decidualization stimuli leads to a 30% increase in MLC20 phosphorylation and prevents decidualization. These data provide evidence that the regulation of cytoskeletal dynamics by MLC20 phosphorylation is critical for decidualization.


Glia ◽  
1992 ◽  
Vol 6 (3) ◽  
pp. 180-187 ◽  
Author(s):  
Ignacio Torres-Aleman ◽  
Maria Teresa Rejas ◽  
Sebastian Pons ◽  
Luis Miguel Garcia-Segura

1997 ◽  
Vol 77 (3) ◽  
pp. 475-490 ◽  
Author(s):  
Klaus Schumann ◽  
Annette Lebeau ◽  
Ursula Gresser ◽  
Theodor Gunther ◽  
Jürgen Vormann

To investigate the mechanism of tissue Fe accumulation in graded Mg deficiency rats were fed on diets of different Mg contents (70, 110, 208, 330, and 850 mg Mg/kg) for 10, 20, and 30 d during rapid growth. There was no significant impact of Mg deficiency or high luminal Mg concentrations on intestinal59Fe transferin vitroorin vivo. Plasma Mg concentrations and body weight started to decrease after 10 d. Significant haemolytic anaemia was observed after 20 d with siderosis in liver and spleen developing in parallel. Anaemia showed no features of Fe deficiency or infiammation. Comparison between the 70 mg Mg/kg group and animals that received the same quantity of a Mg-adequate diet (850 mg Mg/kg) permitted estimation of quantities of Fe liberated by haemolysis and the increased Fe content in liver and spleen. Both variables showed a high degree of correlation, indicating that the excess of liberated haemoglobin Fe was stored in the tissue. The erythropoietic activity was high during rapid growth, i.e. at days 10 and 20 and decreased significantly after 30 d in all except the most Mg-deficient groups. However, haemolytic anaemia developed because even the high erythropoietic activity in the 70 and 110 mg Mg/kg groups was not sutlicient to recycle all haemoglobin Fe liberated by haemolysis. After 30 d of Mg-deficient feeding the erythrocyte Mg content had decreased to 40% of control values. According to the literature Mg-deficient erythrocytes have a decreased survival time which is likely to be the cause of the observed haemolysis.


Sign in / Sign up

Export Citation Format

Share Document