scholarly journals Mitotic entry in the presence of DNA damage is a widespread property of aneuploidy in yeast

2015 ◽  
Vol 26 (8) ◽  
pp. 1440-1451 ◽  
Author(s):  
Heidi M. Blank ◽  
Jason M. Sheltzer ◽  
Colleen M. Meehl ◽  
Angelika Amon

Genetic instability is a hallmark of aneuploidy in budding and fission yeast. All aneuploid yeast strains analyzed to date harbor elevated levels of Rad52-GFP foci, a sign of DNA damage. Here we investigate how continuously elevated levels of DNA damage affect aneuploid cells. We show that Rad52-GFP foci form during S phase, consistent with the observation that DNA replication initiation and elongation are impaired in some aneuploid yeast strains. We furthermore find that although DNA damage is low in aneuploid cells, it nevertheless has dramatic consequences. Many aneuploid yeast strains adapt to DNA damage and undergo mitosis despite the presence of unrepaired DNA leading to cell death. Wild-type cells exposed to low levels of DNA damage exhibit a similar phenotype, indicating that adaptation to low levels of unrepaired DNA is a general property of the cell's response to DNA damage. Our results indicate that by causing low levels of DNA damage, whole-chromosome aneuploidies lead to DNA breaks that persist into mitosis. Such breaks provide the substrate for translocations and deletions that are a hallmark of cancer.

2008 ◽  
Vol 19 (10) ◽  
pp. 4374-4382 ◽  
Author(s):  
Ling Yin ◽  
Alexandra Monica Locovei ◽  
Gennaro D'Urso

In the fission yeast, Schizosaccharomyces pombe, blocks to DNA replication elongation trigger the intra-S phase checkpoint that leads to the activation of the Cds1 kinase. Cds1 is required to both prevent premature entry into mitosis and to stabilize paused replication forks. Interestingly, although Cds1 is essential to maintain the viability of mutants defective in DNA replication elongation, mutants defective in DNA replication initiation require the Chk1 kinase. This suggests that defects in DNA replication initiation can lead to activation of the DNA damage checkpoint independent of the intra-S phase checkpoint. This might result from reduced origin firing that leads to an increase in replication fork stalling or replication fork collapse that activates the G2 DNA damage checkpoint. We refer to the Chk1-dependent, Cds1-independent phenotype as the rid phenotype (for replication initiation defective). Chk1 is active in rid mutants, and rid mutant viability is dependent on the DNA damage checkpoint, and surprisingly Mrc1, a protein required for activation of Cds1. Mutations in Mrc1 that prevent activation of Cds1 have no effect on its ability to support rid mutant viability, suggesting that Mrc1 has a checkpoint-independent role in maintaining the viability of mutants defective in DNA replication initiation.


2005 ◽  
Vol 16 (4) ◽  
pp. 1651-1660 ◽  
Author(s):  
Daniel G. Pankratz ◽  
Susan L. Forsburg

Checkpoints operate during meiosis to ensure the completion of DNA synthesis and programmed recombination before the initiation of meiotic divisions. Studies in the fission yeast Schizosaccharomyces pombe suggest that the meiotic response to DNA damage due to a failed replication checkpoint response differs substantially from the vegetative response, and may be influenced by the presence of homologous chromosomes. The checkpoint responses to DNA damage during fission yeast meiosis are not well characterized. Here we report that DNA damage induced during meiotic S-phase does not activate checkpoint arrest. We also find that in wild-type cells, markers for DNA breaks can persist at least to the first meiotic division. We also observe increased spontaneous S-phase damage in checkpoint mutants, which is repaired by recombination without activating checkpoint arrest. Our results suggest that fission yeast meiosis is exceptionally tolerant of DNA damage, and that some forms of spontaneous S-phase damage can be repaired by recombination without activating checkpoint arrest.


2021 ◽  
Vol 22 (10) ◽  
pp. 5195
Author(s):  
Hui Zhang

In eukaryotic cells, DNA replication licensing is precisely regulated to ensure that the initiation of genomic DNA replication in S phase occurs once and only once for each mitotic cell division. A key regulatory mechanism by which DNA re-replication is suppressed is the S phase-dependent proteolysis of Cdt1, an essential replication protein for licensing DNA replication origins by loading the Mcm2-7 replication helicase for DNA duplication in S phase. Cdt1 degradation is mediated by CRL4Cdt2 ubiquitin E3 ligase, which further requires Cdt1 binding to proliferating cell nuclear antigen (PCNA) through a PIP box domain in Cdt1 during DNA synthesis. Recent studies found that Cdt2, the specific subunit of CRL4Cdt2 ubiquitin E3 ligase that targets Cdt1 for degradation, also contains an evolutionarily conserved PIP box-like domain that mediates the interaction with PCNA. These findings suggest that the initiation and elongation of DNA replication or DNA damage-induced repair synthesis provide a novel mechanism by which Cdt1 and CRL4Cdt2 are both recruited onto the trimeric PCNA clamp encircling the replicating DNA strands to promote the interaction between Cdt1 and CRL4Cdt2. The proximity of PCNA-bound Cdt1 to CRL4Cdt2 facilitates the destruction of Cdt1 in response to DNA damage or after DNA replication initiation to prevent DNA re-replication in the cell cycle. CRL4Cdt2 ubiquitin E3 ligase may also regulate the degradation of other PIP box-containing proteins, such as CDK inhibitor p21 and histone methylase Set8, to regulate DNA replication licensing, cell cycle progression, DNA repair, and genome stability by directly interacting with PCNA during DNA replication and repair synthesis.


2005 ◽  
Vol 187 (20) ◽  
pp. 6998-7008 ◽  
Author(s):  
Myung Suk Kim ◽  
Sung-Hun Bae ◽  
Sang Hoon Yun ◽  
Hee Jung Lee ◽  
Sang Chun Ji ◽  
...  

ABSTRACT We have found, using a newly developed genetic method, a protein (named Cnu, for oriC-binding nucleoid-associated) that binds to a specific 26-base-pair sequence (named cnb) in the origin of replication of Escherichia coli, oriC. Cnu is composed of 71 amino acids (8.4 kDa) and shows extensive amino acid identity to a group of proteins belonging to the Hha/YmoA family. Cnu was previously discovered as a protein that, like Hha, complexes with H-NS in vitro. Our in vivo and in vitro assays confirm the results and further suggest that the complex formation with H-NS is involved in Cnu/Hha binding to cnb. Unlike the hns mutants, elimination of either the cnu or hha gene did not disturb the growth rate, origin content, and synchrony of DNA replication initiation of the mutants compared to the wild-type cells. However, the cnu hha double mutant was moderately reduced in origin content. The Cnu/Hha complex with H-NS thus could play a role in optimal activity of oriC.


2014 ◽  
Vol 35 (5) ◽  
pp. 884-898 ◽  
Author(s):  
Veronika Butin-Israeli ◽  
Stephen A. Adam ◽  
Nikhil Jain ◽  
Gabriel L. Otte ◽  
Daniel Neems ◽  
...  

Nuclear lamins play important roles in the organization and structure of the nucleus; however, the specific mechanisms linking lamin structure to nuclear functions are poorly defined. We demonstrate that reducing nuclear lamin B1 expression by short hairpin RNA-mediated silencing in cancer cell lines to approximately 50% of normal levels causes a delay in the cell cycle and accumulation of cells in early S phase. The S phase delay appears to be due to the stalling and collapse of replication forks. The double-strand DNA breaks resulting from replication fork collapse were inefficiently repaired, causing persistent DNA damage signaling and the assembly of extensive repair foci on chromatin. The expression of multiple factors involved in DNA replication and repair by both nonhomologous end joining and homologous repair is misregulated when lamin B1 levels are reduced. We further demonstrate that lamin B1 interacts directly with the promoters of some genes associated with DNA damage response and repair, includingBRCA1andRAD51. Taken together, the results suggest that the maintenance of lamin B1 levels is required for DNA replication and repair through regulation of the expression of key factors involved in these essential nuclear functions.


Cell Division ◽  
2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Muhseena N. Katheeja ◽  
Shankar Prasad Das ◽  
Suparna Laha

Abstract Background The budding yeast protein Chl1p is a nuclear protein required for sister-chromatid cohesion, transcriptional silencing, rDNA recombination, ageing and plays an instrumental role in chromatin remodeling. This helicase is known to preserve genome integrity and spindle length in S-phase. Here we show additional roles of Chl1p at G1/S phase of the cell cycle following DNA damage. Results G1 arrested cells when exposed to DNA damage are more sensitive and show bud emergence with faster kinetics in chl1 mutants compared to wild-type cells. Also, more damage to DNA is observed in chl1 cells. The viability falls synergistically in rad24chl1 cells. The regulation of Chl1p on budding kinetics in G1 phase falls in line with Rad9p/Chk1p and shows a synergistic effect with Rad24p/Rad53p. rad9chl1 and chk1chl1 shows similar bud emergence as the single mutants chl1, rad9 and chk1. Whereas rad24chl1 and rad53chl1 shows faster bud emergence compared to the single mutants rad24, rad53 and chl1. In presence of MMS induced damage, synergistic with Rad24p indicates Chl1p’s role as a checkpoint at G1/S acting parallel to damage checkpoint pathway. The faster movement of DNA content through G1/S phase and difference in phosphorylation profile of Rad53p in wild type and chl1 cells confirms the checkpoint defect in chl1 mutant cells. Further, we have also confirmed that the checkpoint defect functions in parallel to the damage checkpoint pathway of Rad24p. Conclusion Chl1p shows Rad53p independent bud emergence and Rad53p dependent checkpoint activity in presence of damage. This confirms its requirement in two different pathways to maintain the G1/S arrest when cells are exposed to damaging agents. The bud emergence kinetics and DNA segregation were similar to wild type when given the same damage in nocodazole treated chl1 cells which establishes the absence of any role of Chl1p at the G2/M phase. The novelty of this paper lies in revealing the versatile role of Chl1p in checkpoints as well as repair towards regulating G1/S transition. Chl1p thus regulates the G1/S phase by affecting the G1 replication checkpoint pathway and shows an additive effect with Rad24p for Rad53p activation when damaging agents perturb the DNA. Apart from checkpoint activation, it also regulates the budding kinetics as a repair gene.


2021 ◽  
Author(s):  
Katheeja Muhseena N. ◽  
Shankar Prasad Das ◽  
Suparna Laha

Abstract Background: The helicase Chl1p is a nuclear protein required for sister-chromatid cohesion, transcriptional silencing, rDNA recombination, ageing and plays an instrumental role in chromatin remodeling. This budding yeast protein is known to preserve genome integrity and spindle length in S-phase. Here we show additional roles of Chl1p at G1/S phase of the cell cycle following DNA damage. Results: G1 arrested cells when exposed to DNA damage are more sensitive and show bud emergence with a faster kinetics in chl1 mutants compared to wild-type cells. This role of Chl1p in G1 phase is Rad9p dependent and independent of Rad24 and Rad53. rad9chl1 shows similar bud emergence as the single mutants chl1 and rad9 whereas rad24chl1 and rad53chl1 shows faster bud emergence compared to the single mutants rad24 , rad53 and chl1 . In case of damage induced by genotoxic agent like hydroxyurea, Chl1p acts as a checkpoint at G1/S. The faster movement of DNA content through G1/S phase and difference in phosphorylation profile of Rad53p in wild type and chl1 cells confirms the checkpoint defect in chl1 mutant cells. Further we have observed that the checkpoint defect is synergistic with the replication checkpoint Sgs1p and functions in prallel to the checkpoint pathway of Rad24p. Conclusion: Chl1p shows Rad53p independent bud emergence and Rad53p dependent checkpoint, confirms its requirement in two different pathways to maintain the G1/S arrest when cells are exposed to damaging agents. The bud emergence kinetics and DNA segregation were similar to wild type when given the same damage in nocodazole treated chl1 cells which establishes the absence of any role of Chl1p at the G2/M phase. The novelty of this paper lies in revealing the versatile role of Chl1p in checkpoints as well as repair towards regulating G1/S transition. Chl1 thus regulates the G1/S phase by affecting the G1 replication checkpoint pathway and shows an additive effect with Rad24p as well as Rad53p activation when damaging agents perturbs the DNA.


PLoS Genetics ◽  
2020 ◽  
Vol 16 (12) ◽  
pp. e1008948
Author(s):  
Vincent Gaggioli ◽  
Manuela R. Kieninger ◽  
Anna Klucnika ◽  
Richard Butler ◽  
Philip Zegerman

During metazoan development, the cell cycle is remodelled to coordinate proliferation with differentiation. Developmental cues cause dramatic changes in the number and timing of replication initiation events, but the mechanisms and physiological importance of such changes are poorly understood. Cyclin-dependent kinases (CDKs) are important for regulating S-phase length in many metazoa, and here we show in the nematode Caenorhabditis elegans that an essential function of CDKs during early embryogenesis is to regulate the interactions between three replication initiation factors SLD-3, SLD-2 and MUS-101 (Dpb11/TopBP1). Mutations that bypass the requirement for CDKs to generate interactions between these factors is partly sufficient for viability in the absence of Cyclin E, demonstrating that this is a critical embryonic function of this Cyclin. Both SLD-2 and SLD-3 are asymmetrically localised in the early embryo and the levels of these proteins inversely correlate with S-phase length. We also show that SLD-2 asymmetry is determined by direct interaction with the polarity protein PKC-3. This study explains an essential function of CDKs for replication initiation in a metazoan and provides the first direct molecular mechanism through which polarization of the embryo is coordinated with DNA replication initiation factors.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3831-3831
Author(s):  
Leena Chaudhuri ◽  
James M Bogenberger ◽  
Lisa Sproat ◽  
James L Slack ◽  
Veena Fauble ◽  
...  

Abstract Cytarabine (AraC) resistance is a fundamental feature of refractory/relapsed AML. RNA interference (RNAi) screens conducted in our laboratory recently identified WEE1 kinase (WEE1) as one of the top candidate genes and target in leukemias in combination with AraC. WEE1 is a tyrosine kinase belonging to the Ser/Thr family of protein kinases and acts as a negative regulator of mitotic entry by controlling DNA damage (DDR) and cell cycle checkpoint responses. The WEE1 inhibitor MK1775 potently synergizes with AraC ex vivo and in vitro and clinical trials are in preparation. However, the mechanism of action for the anti-leukemic activity of MK1775 with AraC remains unknown. To elucidate genes mediating activity of the combination, we first performed siRNA rescue screens silencing a custom set of 44 genes involved in WEE1 regulation under combined AraC + MK1775 to identify sensitizers and markers of resistance. The MRN (MRE11, Rad51, NBS1) complex and particularly NBS1 were potent modifiers of AraC and MK1775. Focusing on NBS1 since it is proposed to centrally regulate the defense capacity of leukemic cells, we identified that NBS1 phosphorylation at Ser343 (the ATM regulation site) is significantly altered both in cell lines and primary AML samples under combined AraC+MK1775 treatment as compared to single agent MK1775. In parallel, lower phosphorylation of ATMS1981(an autophosphorylation site in response to DNA strand breaks), was observed indicating that the ATM-CHEK1 pathway is not activated under co-treatment. Further Homologous recombination (HR)-mediated repair was compromised by AraC+MK1775 shown by DR-GFP expression vector to measure intracellular HR capacity: post-transfection of the I-SceI nuclease which cleaves non-functioning GFP tandem repeats to form a functional GFP unit, the HR was reduced with the combination. Consistently other HR markers decreased as well. Delayed accumulation of Cyclin A (indicative of S-phase progression) and greater inhibition of phospho-Cdk2Y15in synchronized cells treated with AraC + MK1775 in comparison to controls was observed. In addition the cell cycle was globally dysregulated by slower S-phase kinetics (progression), a completely abrogated G2/M checkpoint/phase as well as de-regulated DNA replication origin formation and firing as evidenced by Cdt1 and Mus81. As a consequence high single and double strand breaks (ɣH2AX) were observed with an increase in phospho-histone H3 in AraC + MK1775 treated cells compared to untreated cells or MK1775 single agent, confirming faster mitotic entry. Changes were followed by massive induction of apoptosis. Since WEE1 is implicated in leukemic stem cell maintenance we examined the long term effects of the combination in colony forming assays. AraC + MK1775 treated leukemic cells obtained from patients with AML were re-plated on Methocult after drug washout and colonies counted after 14 days. While MK1775 as a single agent could reduce colony formation by 4 fold compared to controls and lower dose AraC, co-treatment with low to moderate doses of AraC and MK1775 reduced colony formation by more than 7 fold and to almost zero in some primary specimens. Taken together, these results suggest that leukemia cells co-treated with AraC + MK1775 lost their ability to activate DNA damage and repair pathways mainly by compromising the MRN complex via NBS1 with subsequently reduced HR. The combination (as opposed to single agents) almost complete dysregulated the cell cycle and its checkpoints lead to DNA damage, genomic instability and rapid exit from the cell cycle with cell death via apoptosis. Thus we have molecularly characterized the detailed mechanisms underlying the potent AraC+WEE1 inhibition in AML and describe for the first time a therapeutic combination that has the potential to abrogate the MRN and NBS1 repair capacity which is central for drug resistance in AML. A key implication of our work is to provide a clinical rationale, mechanistic understanding and suggestions for biomarkers to clinically evaluate AraC + MK1775 in patients with AML. Disclosures: No relevant conflicts of interest to declare.


2007 ◽  
Vol 18 (10) ◽  
pp. 4085-4095 ◽  
Author(s):  
Sharbani Chattopadhyay ◽  
Anja-Katrin Bielinsky

In Saccharomyces cerevisiae, minichromosome maintenance protein (Mcm) 10 interacts with DNA polymerase (pol)-α and functions as a nuclear chaperone for the catalytic subunit, which is rapidly degraded in the absence of Mcm10. We report here that the interaction between Mcm10 and pol-α is conserved in human cells. We used a small interfering RNA-based approach to deplete Mcm10 in HeLa cells, and we observed that the catalytic subunit of pol-α, p180, was degraded with similar kinetics as Mcm10, whereas the regulatory pol-α subunit, p68, remained unaffected. Simultaneous loss of Mcm10 and p180 inhibited S phase entry and led to an accumulation of already replicating cells in late S/G2 as a result of DNA damage, which triggered apoptosis in a subpopulation of cells. These phenotypes differed considerably from analogous studies in Drosophila embryo cells that did not exhibit a similar arrest. To further dissect the roles of Mcm10 and p180 in human cells, we depleted p180 alone and observed a significant delay in S phase entry and fork progression but little effect on cell viability. These results argue that cells can tolerate low levels of p180 as long as Mcm10 is present to “recycle” it. Thus, human Mcm10 regulates both replication initiation and elongation and maintains genome integrity.


Sign in / Sign up

Export Citation Format

Share Document