scholarly journals Spatial regulation of astral microtubule dynamics by Kif18B in PtK cells

2016 ◽  
Vol 27 (20) ◽  
pp. 3021-3030 ◽  
Author(s):  
Claire E. Walczak ◽  
Hailing Zong ◽  
Sachin Jain ◽  
Jane R. Stout

The spatial and temporal control of microtubule dynamics is fundamentally important for proper spindle assembly and chromosome segregation. This is achieved, in part, by the multitude of proteins that bind to and regulate spindle microtubules, including kinesin superfamily members, which act as microtubule-destabilizing enzymes. These fall into two general classes: the kinesin-13 proteins, which directly depolymerize microtubules, and the kinesin-8 proteins, which are plus end–directed motors that either destabilize microtubules or cap the microtubule plus ends. Here we analyze the contribution of a PtK kinesin-8 protein, Kif18B, in the control of mitotic microtubule dynamics. Knockdown of Kif18B causes defects in spindle microtubule organization and a dramatic increase in astral microtubules. Kif18B-knockdown cells had defects in chromosome alignment, but there were no defects in chromosome segregation. The long astral microtubules that occur in the absence of Kif18B are limited in length by the cell cortex. Using EB1 tracking, we show that Kif18B activity is spatially controlled, as loss of Kif18B has the most dramatic effect on the lifetimes of astral microtubules that extend toward the cell cortex. Together our studies provide new insight into how diverse kinesins contribute to spatial microtubule organization in the spindle.

2005 ◽  
Vol 16 (10) ◽  
pp. 4609-4622 ◽  
Author(s):  
Rebecca A. Green ◽  
Roy Wollman ◽  
Kenneth B. Kaplan

Recently, we have shown that a cancer causing truncation in adenomatous polyposis coli (APC) (APC1–1450) dominantly interferes with mitotic spindle function, suggesting APC regulates microtubule dynamics during mitosis. Here, we examine the possibility that APC mutants interfere with the function of EB1, a plus-end microtubule-binding protein that interacts with APC and is required for normal microtubule dynamics. We show that siRNA-mediated inhibition of APC, EB1, or APC and EB1 together give rise to similar defects in mitotic spindles and chromosome alignment without arresting cells in mitosis; in contrast inhibition of CLIP170 or LIS1 cause distinct spindle defects and mitotic arrest. We show that APC1–1450 acts as a dominant negative by forming a hetero-oligomer with the full-length APC and preventing it from interacting with EB1, which is consistent with a functional relationship between APC and EB1. Live-imaging of mitotic cells expressing EB1-GFP demonstrates that APC1–1450 compromises the dynamics of EB1-comets, increasing the frequency of EB1-GFP pausing. Together these data provide novel insight into how APC may regulate mitotic spindle function and how errors in chromosome segregation are tolerated in tumor cells.


2016 ◽  
Vol 213 (3) ◽  
pp. 315-328 ◽  
Author(s):  
David M. Kern ◽  
Peter K. Nicholls ◽  
David C. Page ◽  
Iain M. Cheeseman

The Astrin/SKAP complex plays important roles in mitotic chromosome alignment and centrosome integrity, but previous work found conflicting results for SKAP function. Here, we demonstrate that SKAP is expressed as two distinct isoforms in mammals: a longer, testis-specific isoform that was used for the previous studies in mitotic cells and a novel, shorter mitotic isoform. Unlike the long isoform, short SKAP rescues SKAP depletion in mitosis and displays robust microtubule plus-end tracking, including localization to astral microtubules. Eliminating SKAP microtubule binding results in severe chromosome segregation defects. In contrast, SKAP mutants specifically defective for plus-end tracking facilitate proper chromosome segregation but display spindle positioning defects. Cells lacking SKAP plus-end tracking have reduced Clasp1 localization at microtubule plus ends and display increased lateral microtubule contacts with the cell cortex, which we propose results in unbalanced dynein-dependent cortical pulling forces. Our work reveals an unappreciated role for the Astrin/SKAP complex as an astral microtubule mediator of mitotic spindle positioning.


Author(s):  
Divya Singh ◽  
Nadine Schmidt ◽  
Franziska Müller ◽  
Tanja Bange ◽  
Alexander W. Bird

AbstractThe precise execution of mitotic spindle orientation in response to cell shape cues is important for tissue organization and development. The presence of astral microtubules extending from the centrosome towards the cell cortex is essential for this process, but little is understood about the contribution of astral microtubule dynamics to spindle positioning, or how astral microtubule dynamics are regulated spatiotemporally. The mitotic regulator Cdk1-CyclinB promotes destabilization of centrosomal microtubules and increased microtubule dynamics as cells transition from interphase to mitosis, but how Cdk1 activity specifically modulates astral microtubule stability, and whether it impacts spindle positioning, is unknown. Here we uncover a mechanism revealing that Cdk1 destabilizes astral microtubules to ensure spindle reorientation in response to cell shape. Phosphorylation of the EB1-dependent microtubule plus-end tracking protein GTSE1 by Cdk1 in early mitosis abolishes its interaction with EB1 and recruitment to microtubule plus-ends. Loss of Cdk1 activity, or mutation of phosphorylation sites in GTSE1, induces recruitment of GTSE1 to growing microtubule plus-ends in mitosis. This decreases the catastrophe frequency of astral microtubules, and causes an increase in the number of long astral microtubules reaching the cell cortex, which restrains the ability of cells to reorient spindles along the long cellular axis in early mitosis. Astral microtubules must thus not only be present, but also dynamic to allow the spindle to reorient in response to cell shape, a state achieved by selective destabilization of long astral microtubules via Cdk1.


2020 ◽  
Author(s):  
Theodor Marsoner ◽  
Poornima Yedavalli ◽  
Chiara Masnovo ◽  
Katrin Schmitzer ◽  
Christopher S. Campbell

AbstractChromosome biorientation is established by the four-member chromosomal passenger complex (CPC) through phosphorylation of incorrect kinetochore-microtubule attachments. During chromosome alignment, the CPC localizes to the inner centromere, the inner kinetochore and spindle microtubules. Here we show that a small region of the CPC subunit INCENP/Sli15 is required to target the complex to all three of these locations in budding yeast. This region, the SAH, is essential for phosphorylation of outer kinetochore substrates, chromosome segregation, and viability. By restoring the CPC to each of these three locations individually, we found that inner centromere localization is sufficient to establish chromosome biorientation and viability independently of the other two targeting mechanisms. Remarkably, although neither the inner kinetochore nor microtubule binding activities was able to rescue viability individually, they were able to do so when combined. We have therefore identified two parallel pathways by which the CPC can promote chromosome biorientation and proper completion of mitosis.


2006 ◽  
Vol 17 (4) ◽  
pp. 2069-2080 ◽  
Author(s):  
Rosalind V. Silverman-Gavrila ◽  
Andrew Wilde

The Ran pathway has been shown to have a role in spindle assembly. However, the extent of the role of the Ran pathway in mitosis in vivo is unclear. We report that perturbation of the Ran pathway disrupted multiple steps of mitosis in syncytial Drosophila embryos and uncovered new mitotic processes that are regulated by Ran. During the onset of mitosis, the Ran pathway is required for the production, organization, and targeting of centrosomally nucleated microtubules to chromosomes. However, the role of Ran is not restricted to microtubule organization, because Ran is also required for the alignment of chromosomes at the metaphase plate. In addition, the Ran pathway is required for postmetaphase events, including chromosome segregation and the assembly of the microtubule midbody. The Ran pathway mediates these mitotic events, in part, by facilitating the correct targeting of the kinase Aurora A and the kinesins KLP61F and KLP3A to spindles.


Open Biology ◽  
2013 ◽  
Vol 3 (3) ◽  
pp. 120185 ◽  
Author(s):  
Helfrid Hochegger ◽  
Nadia Hégarat ◽  
Jose B. Pereira-Leal

The correct assembly and timely disassembly of the mitotic spindle is crucial for the propagation of the genome during cell division. Aurora kinases play a central role in orchestrating bipolar spindle establishment, chromosome alignment and segregation. In most eukaryotes, ranging from amoebas to humans, Aurora activity appears to be required both at the spindle pole and the kinetochore, and these activities are often split between two different Aurora paralogues, termed Aurora A and B. Polar and equatorial functions of Aurora kinases have generally been considered separately, with Aurora A being mostly involved in centrosome dynamics, whereas Aurora B coordinates kinetochore attachment and cytokinesis. However, double inactivation of both Aurora A and B results in a dramatic synergy that abolishes chromosome segregation. This suggests that these two activities jointly coordinate mitotic progression. Accordingly, recent evidence suggests that Aurora A and B work together in both spindle assembly in metaphase and disassembly in anaphase. Here, we provide an outlook on these shared functions of the Auroras, discuss the evolution of this family of mitotic kinases and speculate why Aurora kinase activity may be required at both ends of the spindle microtubules.


Author(s):  
Manjuan Zhang ◽  
Fengrui Yang ◽  
Wenwen Wang ◽  
Xiwei Wang ◽  
Dongmei Wang ◽  
...  

Abstract Chromosome segregation in mitosis is orchestrated by the dynamic interactions between the kinetochore and spindle microtubules. Our recent studies show that mitotic motor CENP-E cooperates with SKAP and forms a link between kinetochore core MIS13 complex and spindle microtubule plus-ends to achieve accurate chromosome alignment in mitosis. However, it remains elusive how SKAP regulates kinetochore attachment from lateral association to end-on attachment during metaphase alignment. Here, we identify a novel interaction between Aurora B and SKAP that orchestrates accurate interaction between the kinetochore and dynamic spindle microtubules. Interestingly, SKAP spontaneously phase-separates in vitro via weak, multivalent interactions into droplets with fast internal dynamics. SKAP and Aurora B form heterogeneous coacervates in vitro, which recapitulate the dynamics and behavior of SKAP comets in vivo. Importantly, SKAP interaction with Aurora B via phase separation is essential for accurate chromosome segregation and alignment. Based on those findings, we reason that SKAP–Aurora B interaction via phase separation constitutes a dynamic pool of Aurora B activity during the lateral to end-on conversion of kinetochore–microtubule attachments to achieve faithful cell division.


2019 ◽  
Author(s):  
Aaron R. Tipton ◽  
Gary J. Gorbsky

AbstractThe mitotic spindle functions to move chromosomes to alignment at metaphase, then segregate sister chromatids during anaphase. Analysis of spindle microtubule kinetics utilizing fluorescence dissipation after photoactivation described two main populations, a slow and a fast turnover population, historically taken to reflect kinetochore versus non-kinetochore microtubules respectively. This two component demarcation seems likely oversimplified. Microtubule turnover may vary among different spindle microtubules, regulated by spatial distribution and interactions with other microtubules and with organelles such as kinetochores, chromosome arms, and the cell cortex. How turnover among various spindle microtubules is differentially regulated and its significance remains unclear. We tested the concept of kinetochore versus non-kinetochore microtubules by disrupting kinetochores through depletion of the Ndc80 complex. In the absence of functional kinetochores, microtubule dynamics still exhibited slow and fast turnover populations, though proportions and timings of turnover were altered. Importantly, the data obtained following Hec1/Ndc80 depletion suggests other sub-populations, in addition to kinetochore microtubules, contribute to the slow turnover population. Further manipulation of spindle microtubules revealed a complex landscape. Dissection of the dynamics of microtubule populations will provide a greater understanding of mitotic spindle kinetics and insight into roles in facilitating chromosome attachment, movement, and segregation during mitosis.


2009 ◽  
Vol 20 (6) ◽  
pp. 1639-1651 ◽  
Author(s):  
Rania S. Rizk ◽  
Kevin P. Bohannon ◽  
Laura A. Wetzel ◽  
James Powers ◽  
Sidney L. Shaw ◽  
...  

Within the mitotic spindle, there are multiple populations of microtubules with different turnover dynamics, but how these different dynamics are maintained is not fully understood. MCAK is a member of the kinesin-13 family of microtubule-destabilizing enzymes that is required for proper establishment and maintenance of the spindle. Using quantitative immunofluorescence and fluorescence recovery after photobleaching, we compared the differences in spindle organization caused by global suppression of microtubule dynamics, by treating cells with low levels of paclitaxel, versus specific perturbation of spindle microtubule subsets by MCAK inhibition. Paclitaxel treatment caused a disruption in spindle microtubule organization marked by a significant increase in microtubules near the poles and a reduction in K-fiber fluorescence intensity. This was correlated with a faster t1/2 of both spindle and K-fiber microtubules. In contrast, MCAK inhibition caused a dramatic reorganization of spindle microtubules with a significant increase in astral microtubules and reduction in K-fiber fluorescence intensity, which correlated with a slower t1/2 of K-fibers but no change in the t1/2 of spindle microtubules. Our data support the model that MCAK perturbs spindle organization by acting preferentially on a subset of microtubules, and they support the overall hypothesis that microtubule dynamics is differentially regulated in the spindle.


2016 ◽  
Author(s):  
Michael D. Stubenvoll ◽  
Jeffrey C. Medley ◽  
Miranda Irwin ◽  
Mi Hye Song

AbstractCentrosomes are critical sites for orchestrating microtubule dynamics, and exhibit dynamic changes in size during the cell cycle. As cells progress to mitosis, centrosomes recruit more microtubules (MT) to form mitotic bipolar spindles that ensure proper chromosome segregation. We report a new role for ATX-2, a C. elegans ortholog of Human Ataxin-2, in regulating centrosome size and MT dynamics. ATX-2, an RNA-binding protein, forms a complex with SZY-20 in an RNA-independent fashion. Depleting ATX-2 results in embryonic lethality and cytokinesis failure, and restores centrosome duplication to zyg-1 mutants. In this pathway, SZY-20 promotes ATX-2 abundance, which inversely correlates with centrosome size. Centrosomes depleted of ATX-2 exhibit elevated levels of centrosome factors (ZYG-1, SPD-5, γ-Tubulin), increasing MT nucleating activity but impeding MT growth. We show that ATX-2 influences MT behavior through γ-Tubulin at the centrosome. Our data suggest that RNA-binding proteins play an active role in controlling MT dynamics and provide insight into the control of proper centrosome size and MT dynamics.


Sign in / Sign up

Export Citation Format

Share Document