scholarly journals Life is sweet: the cell biology of glycoconjugates

2019 ◽  
Vol 30 (5) ◽  
pp. 525-529 ◽  
Author(s):  
Alex C. Broussard ◽  
Michael Boyce

Cells are dazzling in their diversity, both within and across organisms. And yet, throughout this variety runs at least one common thread: sugars. All cells on Earth, in all domains of life, are literally covered in glycans, a term referring to the carbohydrate portion of glycoproteins and glycolipids. In spite of (or, perhaps, because of) their tremendous structural and functional complexity, glycans have historically been underexplored compared with other areas of cell biology. Recently, however, advances in experimental systems and analytical methods have ushered in a renaissance in glycobiology, the study of the biosynthesis, structures, interactions, functions, and evolution of glycans. Today, glycobiology is poised to make major new contributions to cell biology and become more fully integrated into our understanding of cell and organismal physiology.

2018 ◽  
Vol 2 (4) ◽  
pp. 547-559 ◽  
Author(s):  
Yan Liao ◽  
Solenne Ithurbide ◽  
Roshali T. de Silva ◽  
Susanne Erdmann ◽  
Iain G. Duggin

The tubulin superfamily of cytoskeletal proteins is widespread in all three domains of life — Archaea, Bacteria and Eukarya. Tubulins build the microtubules of the eukaryotic cytoskeleton, whereas members of the homologous FtsZ family construct the division ring in prokaryotes and some eukaryotic organelles. Their functions are relatively poorly understood in archaea, yet these microbes contain a remarkable diversity of tubulin superfamily proteins, including FtsZ for division, a newly described major family called CetZ that is involved in archaeal cell shape control, and several other divergent families of unclear function that are implicated in a variety of cell envelope-remodelling contexts. Archaeal model organisms, particularly halophilic archaea such as Haloferax volcanii, have sufficiently developed genetic tools and we show why their large, flattened cells that are capable of controlled differentiation are also well suited to cell biological investigations by live-cell high-resolution light and electron microscopy. As most archaea only have a glycoprotein lattice S-layer, rather than a peptidoglycan cell wall like bacteria, the activity of the tubulin-like cytoskeletal proteins at the cell envelope is expected to vary significantly, and may involve direct membrane remodelling or directed synthesis or insertion of the S-layer protein subunits. Further studies of archaeal cell biology will provide fresh insight into the evolution of cells and the principles in common to their fundamental activities across the full spectrum of cellular life.


2021 ◽  
pp. 23-48
Author(s):  
Douglas Biber ◽  
Bethany Gray ◽  
Shelley Staples ◽  
Jesse Egbert

Blood ◽  
2012 ◽  
Vol 119 (14) ◽  
pp. 3226-3235 ◽  
Author(s):  
Anna Bigas ◽  
Lluis Espinosa

Abstract Notch is a well-conserved signaling pathway and its function in cell fate determination is crucial in embryonic development and in the maintenance of tissue homeostasis during adult life. Notch activation depends on cell-cell interactions that are essential for the generation of cell diversity from initially equivalent cell populations. In the adult hematopoiesis, Notch is undoubtedly a very efficient promoter of T-cell differentiation, and this has masked for a long time the effects of Notch on other blood lineages, which are gradually being identified. However, the adult hematopoietic stem cell (HSC) remains mostly refractory to Notch intervention in experimental systems. In contrast, Notch is essential for the generation of the HSCs, which takes place during embryonic development. This review summarizes the knowledge accumulated in recent years regarding the role of the Notch pathway in the different stages of HSC ontology from embryonic life to fetal and adult bone marrow stem cells. In addition, we briefly examine other systems where Notch regulates specific stem cell capacities, in an attempt to understand how Notch functions in stem cell biology.


Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 269
Author(s):  
Markus Kilisch ◽  
Hansjörg Götzke ◽  
Maja Gere-Becker ◽  
Alexander Crauel ◽  
Felipe Opazo ◽  
...  

Epitope tags are widely employed as tools to detect, purify and manipulate proteins in various experimental systems. We recently introduced the ALFA-tag together with two ALFA-specific single-domain antibodies (sdAbs), NbALFA and NbALFAPE, featuring high or intermediate affinity, respectively. Together, the ALFA system can be employed for a broad range of applications in microscopy, cell biology and biochemistry requiring either extraordinarily stable binding or mild competitive elution at room temperature. In order to further enhance the versatility of the ALFA system, we, here, aimed at developing an sdAb optimized for efficient elution at low temperatures. To achieve this, we followed a stringent selection scheme tailored to the specific application. We found candidates combining a fast capture of ALFA-tagged proteins with an efficient competitive elution at 4 °C in physiological buffer. Importantly, by employing a structure-guided semisynthetic library based on well-characterized NbALFA variants, the high specificity and consistent binding of proteins harboring ALFA-tags at either terminus could be maintained. ALFA SelectorCE, a resin presenting the cold-elutable NbALFACE, is an ideal tool for the one-step purification of sensitive protein complexes or temperature-labile enzymes. We believe that the general approach followed during the selection and screening can be transferred to other challenging sdAb discovery projects.


Morphologia ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 92-98
Author(s):  
Abraham L Kierszenbaum M.D. Ph.D., Laura Tres M.D. Ph.D.

Linking basic science to clinical application throughout, Histology and Cell Biology: An Introduction to Pathology, 5th Edition, helps students build a stronger clinical knowledge base in the challenging area of pathologic abnormalities. This award-winning text presents key concepts in an understandable, easy-to-understand manner, with full-color illustrations, diagrams, photomicrographs, and pathology photos fully integrated on every page. Student-friendly features such as highlighted clinical terms, Clinical Conditions boxes, Essential Concepts boxes, concept mapping animations, and more help readers quickly grasp complex information. Features new content on cancer immunotherapy, satellite cells and muscle repair, vasculogenesis and angiogenesis in relation to cancer treatment, and mitochondria replacement therapies. Presents new material on ciliogenesis, microtubule assembly and disassembly, chromatin structure and condensation, and X chromosome inactivation, which directly impact therapy for ciliopathies, infertility, cancer, and Alzheimer’s disease. Provides thoroughly updated information on gestational trophoblastic diseases, molecular aspects of breast cancer, and basic immunology, including new illustrations on the structure of the T-cell receptor, CD4+ cells subtypes and functions, and the structure of the human spleen. Uses a new, light green background throughout the text to identify essential concepts of histology – a feature requested by both students and instructors to quickly locate which concepts are most important for beginning learners or when time is limited. These essential concepts are followed by more detailed information on cell biology and pathology. Contains new Primers in most chapters that provide a practical, self-contained integration of histology, cell biology, and pathology – perfect for clarifying the relationship between basic and clinical sciences. Identifies clinical terms throughout the text and lists all clinical boxes in the table of contents for quick reference. Helps students understand the links between chapter concepts with concept mapping animations on Student Consult™ – an outstanding supplement to in-class instruction. Student Consult™ eBook version included with purchase. This enhanced eBook experience allows you to search all of the text, figures, and references from the book on a variety of devices.


2020 ◽  
Author(s):  
Steven J. Biller ◽  
Rachel A. Lundeen ◽  
Laura R. Hmelo ◽  
Kevin W. Becker ◽  
Aldo A. Arellano ◽  
...  

AbstractExtracellular vesicles are small (~50–200 nm diameter) membrane-bound structures released by cells from all domains of life. While vesicles are abundant in the oceans, our understanding of their functions, both for cells themselves and the emergent ecosystem, is in its infancy. To advance this understanding, we analyzed the lipid, protein, and metabolite content of vesicles produced by the marine cyanobacterium Prochlorococcus. We show that Prochlorococcus exports an enormous array of cellular compounds into the surrounding seawater within vesicles. Vesicles produced by two different strains contain some materials in common, but also display numerous strain-specific differences, reflecting functional complexity within natural vesicle populations. Prochlorococcus vesicles contain active enzymes, indicating that they can mediate extracellular biogeochemical reactions in the ocean. We demonstrate that vesicles from Prochlorococcus and other bacteria associate with diverse microbes including the most abundant marine bacterium, Pelagibacter. Our observations suggest that vesicles may play diverse functional roles in the oceans, including but not limited to mediating energy and nutrient transfers, catalyzing extracellular biochemical reactions, and mitigating toxicity of reactive oxygen species. These findings indicate that a portion of ‘dissolved’ compounds in the oceans are not truly dissolved, but are instead packaged within locally structured, particulate vesicles.


2010 ◽  
Vol 427 (1) ◽  
pp. 1-17 ◽  
Author(s):  
Jaswinder K. Sethi ◽  
Antonio Vidal-Puig

At the cellular level, the biological processes of cell proliferation, growth arrest, differentiation and apoptosis are all tightly coupled to appropriate alterations in metabolic status. In the case of cell proliferation, this requires redirecting metabolic pathways to provide the fuel and basic components for new cells. Ultimately, the successful co-ordination of cell-specific biology with cellular metabolism underscores multicellular processes as diverse as embryonic development, adult tissue remodelling and cancer cell biology. The Wnt signalling network has been implicated in all of these areas. While each of the Wnt-dependent signalling pathways are being individually delineated in a range of experimental systems, our understanding of how they integrate and regulate cellular metabolism is still in its infancy. In the present review we reassess the roles of Wnt signalling in functionally linking cellular metabolism to tissue development and function.


Author(s):  
William H. Zucker

Planktonic foraminifera are widely-distributed and abundant zooplankters. They are significant as water mass indicators and provide evidence of paleotemperatures and events which occurred during Pleistocene glaciation. In spite of their ecological and paleological significance, little is known of their cell biology. There are few cytological studies of these organisms at the light microscope level and some recent reports of their ultrastructure.Specimens of Globigerinoides ruber, Globigerina bulloides, Globigerinoides conglobatus and Globigerinita glutinata were collected in Bermuda waters and fixed in a cold cacodylate-buffered 6% glutaraldehyde solution for two hours. They were then rinsed, post-fixed in Palade's fluid, rinsed again and stained with uranyl acetate. This was followed by graded ethanol dehydration, during which they were identified and picked clean of debris. The specimens were finally embedded in Epon 812 by placing each organism in a separate BEEM capsule. After sectioning with a diamond knife, stained sections were viewed in a Philips 200 electron microscope.


Author(s):  
W. Bernard

In comparison to many other fields of ultrastructural research in Cell Biology, the successful exploration of genes and gene activity with the electron microscope in higher organisms is a late conquest. Nucleic acid molecules of Prokaryotes could be successfully visualized already since the early sixties, thanks to the Kleinschmidt spreading technique - and much basic information was obtained concerning the shape, length, molecular weight of viral, mitochondrial and chloroplast nucleic acid. Later, additonal methods revealed denaturation profiles, distinction between single and double strandedness and the use of heteroduplexes-led to gene mapping of relatively simple systems carried out in close connection with other methods of molecular genetics.


Sign in / Sign up

Export Citation Format

Share Document