scholarly journals Transition of podosomes into zipper-like structures in macrophage-derived multinucleated giant cells

2020 ◽  
Vol 31 (18) ◽  
pp. 2002-2020
Author(s):  
Arnat Balabiyev ◽  
Nataly P. Podolnikova ◽  
Aibek Mursalimov ◽  
David Lowry ◽  
Jason M. Newbern ◽  
...  

Our study reveals previously unrecognized actin-based zipper-like structures (ZLSs) formed between macrophage-derived multinucleated giant cells undergoing fusion in vivo and in vitro. It is shown that podosomes are precursors of these structures. The transition of podosomes into ZLSs is induced by bridging plasma membranes by E-cadherin and nectin-2.

2011 ◽  
Vol 493-494 ◽  
pp. 252-257 ◽  
Author(s):  
L. Nascimento ◽  
M. Medeiros ◽  
J. Calasans-Maia ◽  
A. Alves ◽  
Antonella M. Rossi ◽  
...  

This study investigated the osteoinductive potential of granules of stoichiometric hydroxyapatite (HA) and 0.5% zinc containing hydroxyapatite (ZnHA) in intramuscular (IM) site of rabbit’s abdomen. The biomaterials were both used in granular form, with 75% porosity and particle diameter between 450 and 500μm, sintered at 1100°C. Both materials performed adequately on a multiparametric in vitro cytocompatibility assay, indicating their suitability for in vivo testing. After approval by the Ethics Commission on Teaching and Research in Animals, fifteen rabbits were submitted to general anesthesia, incision and tissue dilatation, and a small site was created for HA (right incision) and ZnHA (left incision) intramuscular implantation. The animals were killed after 2, 4 and 12 weeks for biomaterials and surrounding tissues removal. Histological analysis after 2 weeks revealed the presence of granulation tissue surrounding biomaterials with multinucleated giant cells and no newly formed bone for both materials. After 4 weeks there was fibrous tissue involving the material and few inflammatory cells. Following 12 weeks it was observed the presence of connective tissue surrounding the biomaterial, cellularized enough for the two experimental groups, but it was not observed the presence of bone matrix associated with the biomaterials. We conclude that both biomaterials are cytocompatible and did not present the property of osseoinduction after 12 weeks of implantation.


2019 ◽  
Vol 108 (1) ◽  
pp. 282-297 ◽  
Author(s):  
Ana Carolina Cestari Bighetti ◽  
Tania Mary Cestari ◽  
Paula Sanches Santos ◽  
Ricardo Vinicius Nunes Arantes ◽  
Suelen Paini ◽  
...  

2020 ◽  
Author(s):  
Arnat Balabiyev ◽  
Nataly P. Podolnikova ◽  
Aibek Mursalimov ◽  
David Lowry ◽  
Jason M. Newbern ◽  
...  

ABSTRACTMacrophage fusion resulting in the formation of multinucleated giant cells (MGCs) is a multistage process that requires many adhesion-dependent steps and involves the rearrangement of the actin cytoskeleton. The diversity of actin-based structures and their role in macrophage fusion is poorly understood. In this study, we revealed hitherto unrecognized actin-based zipper-like structures (ZLSs) that arise between MGCs formed on the surface of implanted biomaterials. We established an in vitro model for the induction of these structures in mouse macrophages undergoing IL-4– mediated fusion. Using this model, we show that over time MGCs develop cell-cell contacts containing ZLSs. Live-cell imaging using macrophages isolated from mRFP- or GFP-Lifeact mice demonstrated that ZLSs are dynamic formations undergoing continuous assembly and disassembly and that podosomes are precursors of these structures. Immunostaining experiments showed that vinculin, talin, integrin αMβ2, and other components of podosomes are present in ZLSs. Macrophages deficient in WASp or Cdc42, two key molecules involved in actin core organization in podosomes, as well as cells treated with the inhibitors of the Arp2/3 complex failed to form ZLSs. Furthermore, E-cadherin and nectin-2 were found between adjoining membranes, suggesting that the transition of podosomes into ZLSs is induced by bridging plasma membranes by junctional proteins.


2003 ◽  
Vol 98 (4) ◽  
pp. 854-859 ◽  
Author(s):  
Kenkou Maeda ◽  
Masaaki Mizuno ◽  
Toshihiko Wakabayashi ◽  
Syuntarou Takasu ◽  
Tetsurou Nagasaka ◽  
...  

Object. The nature and origin of multinucleated giant cells in glioma have not been made clear. To investigate the phosphorylation of intermediate filaments, the authors studied multinucleated giant cells in vitro and in vivo by using mitosis-specific phosphorylated antibodies. Methods. Cultured human glioma cells were immunostained with monoclonal antibodies (mAbs) 4A4, KT13, and TM71, which recognized the phosphorylation of vimentin at Ser55, glial fibrillary acidic protein at Ser13, and vimentin at Ser71, respectively. Subsequently, the nature of multinucleated giant cells was investigated using laser scanning confocal microscopy. In addition, paraffin-embedded tissue sections obtained in three patients with giant cell glioblastoma were also investigated. Multinucleated giant cells were immunoreacted with the mAb 4A4 and not with KT13 and TM71 in vitro and in vivo. In addition, the authors obtained these results in multinucleated giant cells under natural conditions, without drug treatments. Conclusions. Findings in this investigation indicated that multinucleated giant cells are those remaining in mitosis between metaphase and telophase, undergoing neither fusion nor degeneration.


1966 ◽  
Vol 28 (2) ◽  
pp. 303-332 ◽  
Author(s):  
Jerry S. Sutton ◽  
Leon Weiss

The sequential transformation of chicken monocytes into macrophages, epithelioid cells, and multinucleated giant cells in vitro was studied by electron microscopy after fixation and embedment in situ. The following changes occur. In the nucleus, margination of chromatin, evident in monocytes, decreases in later forms. Nucleoli become more complex and nuclear pores increase in number. In cytoplasm, a progressive increase in volume of the ectoplasm and endoplasm occurs in culture. Lysosomes increase in number and size prior to phagocytosis. During phagocytosis (most active from 1 to 3 days of culture) lysosome depletion occurs. Lysosomes are present in greatest number and show maximal structural variation in the epithelioid and young giant cells. Aging giant cells lose lysosomes. All stages possess variably large quantities of rough-surfaced endoplasmic reticulum and free ribosomes. The Golgi apparatus, small in monocytes, increases in size and complexity. Massive accumulations of lysosomes within the Golgi apparatus of macrophages and epithelioid cells suggest that lysosomes originate there. In giant cells, multiple Golgi regions occur, often ringing the nuclei. Monocytes and macrophages have few mitochondria. Mitochondria of epithelioid cells are larger, more numerous, and may have discontinuous outer membranes. Mitochondria are most numerous in giant cells where they increase with age and become polymorphous. Cytoplasmic filaments are approximately 50 to 60 A in diameter and of indeterminate length. They occur both singly and in bundles which touch cytoplasmic vesicles and mitochondria. Few filaments occur in monocytes and macrophages. A large increase in the number of filaments occurs in epithelioid cells, where filaments (90 to 100 A) surround the cytocentrum as a distinctive annular bundle often branching into the cytoplasm. The greatest concentration of filaments occurs in aged giant cells. Pseudopodia are always present. They are short and filiform in monocytes and giant cells, and broad, with abundant micropinocytotic vesicles, in macrophages and epithelioid cells. At every stage, the cell membrane contains dense cuplike structures. These may represent the membranous residue of lysosomes which have discharged to the outside, analogous to merocrine secretion. Contiguous epithelioid cells display elaborate cytoplasmic interdigitation. In places, the plasma membranes break down and epithelioid cells fuse to form giant cells.


2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Chun Cheng ◽  
Jun Yang ◽  
Si-Wei Li ◽  
Guofu Huang ◽  
Chenxi Li ◽  
...  

AbstractHistone deacetylases (HDACs) are involved in tumor progression, and some have been successfully targeted for cancer therapy. The expression of histone deacetylase 4 (HDAC4), a class IIa HDAC, was upregulated in our previous microarray screen. However, the role of HDAC4 dysregulation and mechanisms underlying tumor growth and metastasis in nasopharyngeal carcinoma (NPC) remain elusive. Here, we first confirmed that the HDAC4 levels in primary and metastatic NPC tissues were significantly increased compared with those in normal nasopharyngeal epithelial tissues and found that high HDAC4 expression predicted a poor overall survival (OS) and progression-free survival (PFS). Functionally, HDAC4 accelerated cell cycle G1/S transition and induced the epithelial-to-mesenchymal transition to promote NPC cell proliferation, migration, and invasion in vitro, as well as tumor growth and lung metastasis in vivo. Intriguingly, knockdown of N-CoR abolished the effects of HDAC4 on the invasion and migration abilities of NPC cells. Mechanistically, HDAC3/4 binds to the E-cadherin promoter to repress E-cadherin transcription. We also showed that the HDAC4 inhibitor tasquinimod suppresses tumor growth in NPC. Thus, HDAC4 may be a potential diagnostic marker and therapeutic target in patients with NPC.


2006 ◽  
Vol 14 (4) ◽  
pp. 203-206 ◽  
Author(s):  
Michael S. Wertheim ◽  
William D. Mathers ◽  
Lyndell Lim ◽  
Angela S. Watkins ◽  
Friederike Mackensen ◽  
...  

Development ◽  
1981 ◽  
Vol 61 (1) ◽  
pp. 277-287
Author(s):  
A. J. Copp

The number of trophoblast giant cells in outgrowths of mouse blastocysts was determined before, during and after egg-cylinder formation in vitro. Giant-cell numbers rose initially but reached a plateau 12 h before the egg cylinder appeared. A secondary increase began 24 h after egg-cylinder formation. Blastocysts whose mural trophectoderm cells were removed before or shortly after attachment in vitro formed egg cylinders at the same time as intact blastocysts but their trophoblast outgrowths contained fewer giant cells at this time. The results support the idea that egg-cylinder formation in vitro is accompanied by a redirection of the polar to mural trophectoderm cell movement which characterizes blastocysts before implantation. The resumption of giant-cell number increase in trophoblast outgrowths after egg-cylinder formation may correspond to secondary giant-cell formation in vivo. It is suggested that a time-dependent change in the strength of trophoblast cell adhesion to the substratum occurs after blastocyst attachment in vitro which restricts the further entry of polar cells into the outgrowth and therefore results in egg-cylinder formation.


2017 ◽  
Vol 38 (3) ◽  
pp. 1561-1568 ◽  
Author(s):  
Xiaoxi Li ◽  
Hong Wang ◽  
Xingxing Du ◽  
Wenna Yu ◽  
Jingwen Jiang ◽  
...  

1991 ◽  
Vol 252 ◽  
Author(s):  
P. B. van Wachem ◽  
P. B. van Wachem ◽  
L. H. H. Olde Damink ◽  
P. J. Dijkstra ◽  
J. Feijen ◽  
...  

ABSTRACTPretreatment in tissue culture (TC) was previously found to markedly reduce the in vitro cytotoxicity of two types of crosslinked dermal sheep collagens (DSC's). This in vivo study confirms our in vitro results, in that TC-pretreatment of crosslinked DSC's resulted in the marked reduction or elimination of cytotoxic effects, such as increased cell infiltration, a deviant neutrophil-morphology, lipid formation and cell death. TC-pretreatment affected the crosslinked state of both DSC's in a different way, which could be deduced from the differences in gelatin-formation and presence of giant cells from macrophage- or fibroblast-origin. The results are explained in view of the differences in crosslinking.


Sign in / Sign up

Export Citation Format

Share Document