reduce tumor burden
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 14)

H-INDEX

8
(FIVE YEARS 3)

2021 ◽  
Vol 11 ◽  
Author(s):  
Hui-Chuan Sun ◽  
Xiao-Dong Zhu

The high mortality rate associated with hepatocellular carcinoma (HCC) is partly due to the high proportion of patients who present with advanced stage disease at diagnosis, for whom there are limited treatment options. For selected patients with initially unresectable HCC, locoregional and/or systemic treatments can result in tumor downstaging and consequently provide opportunities for surgical intervention and the potential for long-term survival. Therefore, the key aim of ‘conversion therapy’ is to reduce tumor burden so that patients become amenable to surgical resection. Various therapies have been investigated as candidates for downstaging patients with potentially resectable HCC including transarterial chemoembolization, transarterial radioembolization with yttrium-90 microspheres, radiotherapy, systemic therapies and combination or multimodality treatment approaches. However, downstaging conversion therapy remains controversial and there are several challenges such as defining the criteria used to identify the population of patients who are ‘potentially resectable’, the criteria used to define successful downstaging, and the optimum treatment approach to maximize the success of downstaging therapy. In this review article, we summarize clinical experience and evidence of downstaging conversion treatment in patients identified as having ‘potentially resectable’ HCC.


2021 ◽  
Author(s):  
Simin Pan ◽  
Michael Cesarek ◽  
Carla Godoy ◽  
Cynthia Co ◽  
Catherine Schindler ◽  
...  

Abstract Osteosarcoma (OS) is the most common primary bone malignancy. Chemotherapy plays an essential role in OS treatment, potentially doubling 5-year event-free survival if tumor necrosis can be stimulated, but long-term treatment results in detriment to health and quality of life. The canonical Wnt inhibitor Dickkopf-1 (Dkk-1) enhances OS survival in part through upregulation of aldehyde-dehydrogenase-1A1 (ALDH1A1) which neutralizes reactive oxygen species from nutritional stress and chemotherapeutic challenge. Dkk-1 also inhibits bone repair, exacerbating formation of osteolytic lesions caused by tumor infiltration. Therefore, targeting the expression of Dkk-1 in OS could reduce tumor burden and increase susceptibility to chemotherapeutics while restoring bone repair. Herein, we report that inhibiting Dkk-1 transcription by means of a vivo morpholino (DkkMo) reduced the expansion of experimental OS tumors, preserved bone volume and architecture, and stimulated tumor necrosis. This was observed in the presence or absence of doxorubicin (DRB), and as a single agent, inhibition of tumor expansion by DkkMo was equivalent to that achieved by DRB. DkkMo stimulated apoptotic and necrotic mechanisms in tumors and appeared to deplete the tumor stroma. These results indicate that administration of DkkMo with or without chemotherapeutics can substantially improve OS outcome with respect to tumor expansion and osteolytic corruption of bone.


Cancers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 3444
Author(s):  
Sarah Adriana Scuderi ◽  
Giovanna Casili ◽  
Alessio Ardizzone ◽  
Stefano Forte ◽  
Lorenzo Colarossi ◽  
...  

Glioblastoma (GB) is the most aggressive tumor of the central nervous system (CNS), characterized by excessive proliferation, necrosis and invasiveness. The survival rate for patients with GB still remains low. Angiogenesis and apoptosis play a key role in the development of GB. Thus, the modulation of angiogenesis and apoptosis processes represent a possible strategy to counteract GB progression. This study aimed to investigate the potential effect of KYP-2047, an inhibitor of the prolyl-oligopeptidase (POP), known to modulate angiogenesis, in an in vivo U87-xenograft model and in an in vitro study on human GB cells. Our results showed that KYP-2047 at doses of 2.5 mg/kg and 5 mg/kg was able to reduce tumor burden in the xenograft-model. Moreover, KYP-2047 significantly reduced vascular endothelial-growth-factor (VEGF), angiopoietins (Ang) and endothelial-nitric-oxide synthase (eNOS) expression. In vitro study revealed that KYP-2047 at different concentrations reduced GB cells’ viability. Additionally, KYP-2047 at the concentrations of 50 µM and 100 µM was able to increase the pro-apoptotic protein Bax, p53 and caspase-3 expression whereas Bcl-2 expression was reduced. Thus, KYP-2047 could represent a potential therapeutic treatment to counteract or reduce GB progression, thanks its abilities to modulate angiogenesis and apoptosis pathways.


Author(s):  
Ana Rita Garizo ◽  
Flávia Castro ◽  
Cláudia Martins ◽  
Andreia Almeida ◽  
Tiago P. Dias ◽  
...  

2021 ◽  
Vol 118 (26) ◽  
pp. e2107424118
Author(s):  
Itziar Ibarlucea-Benitez ◽  
Polina Weitzenfeld ◽  
Patrick Smith ◽  
Jeffrey V. Ravetch

Given the role of myeloid cells in T cell activation and in the antitumor response, targeting checkpoint molecules expressed on this population represents a promising strategy to augment antitumor immunity. However, myeloid checkpoints that can be effectively used as immunotherapy targets are still lacking. Here, we demonstrate the therapeutic potential of targeting the myeloid receptors Siglec-7 and Siglec-9 in vivo. By using a humanized immunocompetent murine model, we demonstrate that human Siglec-7 and Siglec-9, in addition to the murine homolog Siglec-E, inhibit the endogenous antitumor immune response, as well as the response to tumor-targeting and immune checkpoint inhibiting antibodies in vivo. The impact of these Siglecs on tumor progression is highly dependent on the anatomical distribution of the tumor and, as a consequence, the local tumor microenvironment, as tumors with a more immune-suppressive tumor microenvironment are less sensitive to Siglec perturbation. Finally, to assess the potential of these two receptors as targets for immunotherapy, we developed Fc engineered blocking antibodies to Siglec-7 and Siglec-9 and demonstrate that Siglec-7 and Siglec-9 blockade can significantly reduce tumor burden in vivo, demonstrating the therapeutic potential of targeting these two receptors.


2021 ◽  
Vol 10 (12) ◽  
pp. 2638
Author(s):  
Giuseppinella Melita ◽  
Socrate Pallio ◽  
Andrea Tortora ◽  
Stefano Francesco Crinò ◽  
Antonio Macrì ◽  
...  

Pancreatic neuroendocrine neoplasms (PanNENs) are relatively rare, but their incidence has increased significantly in the last decades. Precise diagnosis and prognostic stratification are crucial for proper patient management. Endoscopic ultrasound (EUS) is the modality of choice for diagnosis of solid pancreatic tumors, showing a higher tumor detection rate than other imaging modalities, especially for small size lesions. EUS also serves as a guide for preoperative sampling and other interventions. EUS-tissue acquisition is a safe and highly accurate technique for cyto/histological diagnosis of PanNENs with a well-demonstrated correlation between Ki-67 proliferation index values and tumor grading on EUS and surgical specimens according to the WHO 2017 classification. Furthermore, the possibility of a preoperative EUS-guided fine needle tattooing or fiducial markers placement may help the surgeon to locate small and deep tumors, thus avoiding formal pancreatic resections in favor of parenchymal-sparing surgery. Finally, locoregional ablative treatments using either ethanol injection or radiofrequency ablation have been proposed in recent studies with promising results in order to control symptoms or reduce tumor burden in selected patients unfit for surgery with functioning or non-functioning PanNENs. This article review highlights the current role of EUS in PanNENs management, focusing on the present and future applications of EUS-guided interventions.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 960
Author(s):  
Tiziana Cotechini ◽  
Aline Atallah ◽  
Arielle Grossman

Macrophages within solid tumors and metastatic sites are heterogenous populations with different developmental origins and substantially contribute to tumor progression. A number of tumor-promoting phenotypes associated with both tumor- and metastasis-associated macrophages are similar to innate programs of embryonic-derived tissue-resident macrophages. In contrast to recruited macrophages originating from marrow precursors, tissue-resident macrophages are seeded before birth and function to coordinate tissue remodeling and maintain tissue integrity and homeostasis. Both recruited and tissue-resident macrophage populations contribute to tumor growth and metastasis and are important mediators of resistance to chemotherapy, radiation therapy, and immune checkpoint blockade. Thus, targeting various macrophage populations and their tumor-promoting phenotypes holds therapeutic promise. Here, we discuss various macrophage populations as regulators of tumor progression, immunity, and immunotherapy. We provide an overview of macrophage targeting strategies, including therapeutics designed to induce macrophage depletion, impair recruitment, and induce repolarization. We also provide a perspective on the therapeutic potential for macrophage-specific acquisition of trained immunity as an anti-cancer agent and discuss the therapeutic potential of exploiting macrophages and their traits to reduce tumor burden.


2021 ◽  
Author(s):  
Lauren M Raymond ◽  
Tetiana Korzun ◽  
Adel Kardosh ◽  
Kenneth J. Kolbeck ◽  
Rodney Pommier ◽  
...  

Gastroenteropancreatic neuroendocrine tumors (GEP-NETs) are the most common form of neuroendocrine neoplasia, but there is no current consensus for the sequencing of approved therapies, particularly with respect to peptide receptor radionuclide therapy (PRRT). This comprehensive review evaluates the data supporting approved therapies for GEP-NETs and recommendations for therapeutic sequencing with a focus on how PRRT currently fits within sequencing algorithms. The current recommendations for PRRT sequencing restrict its use to metastatic, inoperable, progressive midgut NETs, however, this may change with emerging data to suggest PRRT might be beneficial as neoadjuvant therapy for inoperable tumors, is more tolerable than other treatment modalities following first-line standard dose somatostatin analogues, and can be used as salvage therapy after disease relapse following prior successful cycles of PRRT. PRRT has also been shown to reduce tumor burden, improve quality of life, and prolong the time to disease progression in a broad spectrum of patients with GEP-NETs. As the various potential benefits of PRRT in GEP-NET therapy continues to expand, it is necessary to review and critically evaluate our treatment algorithms for GEP-NETs.


2021 ◽  
Vol 11 ◽  
Author(s):  
Samuel I. Kim ◽  
Christopher R. Cassella ◽  
Katelyn T. Byrne

Cancer immunotherapy has revolutionized the treatment landscape in medical oncology, but its efficacy has been variable across patients. Biomarkers to predict such differential response to immunotherapy include cytotoxic T lymphocyte infiltration, tumor mutational burden, and microsatellite instability. A growing number of studies also suggest that baseline tumor burden, or tumor size, predicts response to immunotherapy. In this review, we discuss the changes in immune profile and therapeutic responses that occur with increasing tumor size. We also overview therapeutic approaches to reduce tumor burden and favorably modulate the immune microenvironment of larger tumors.


Cancers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1301 ◽  
Author(s):  
Jun Tang ◽  
Daniel Ramis-Cabrer ◽  
Xuejie Wang ◽  
Esther Barreiro

Background: Lung cancer (LC) is a major leading cause of death worldwide. Immunomodulators that target several immune mechanisms have proven to reduce tumor burden in experimental models through induction of the immune microenvironment. We hypothesized that other biological mechanisms may also favor tumor burden reduction in lung cancer-bearing mice treated with immunomodulators. Methods: Tumor weight, area, T cells and tumor growth (immunohistochemistry), oxidative stress, apoptosis, autophagy, and signaling (NF-κB and sirtuin-1) markers were analyzed (immunoblotting) in subcutaneous tumor of BALB/c mice injected with LP07 adenocarcinoma cells treated with monoclonal antibodies (CD-137, CTLA-4, PD-1, and CD-19, N = 9/group) and non-treated control animals. Results: Compared to non-treated cancer mice, in tumors of monoclonal-treated animals, tumor area and weight and ki-67 were significantly reduced, while T cell counts, oxidative stress, apoptosis, autophagy, activated p65, and sirtuin-1 markers were increased. Conclusions: Immunomodulators elicited a reduction in tumor burden (reduced tumor size and weight) through decreased tumor proliferation and increased oxidative stress, apoptosis, autophagy, and signaling markers, which may have interfered with the immune profile of the tumor microenvironment. Future research should be devoted to the elucidation of the specific contribution of each biological mechanism to the reduced tumor burden.


Sign in / Sign up

Export Citation Format

Share Document