scholarly journals The Transcriptional Response to Oxidative Stress is Independent of Stress-Granule Formation

Author(s):  
Amanjot Singh ◽  
Arvind Reddy Kandi ◽  
Deepa Jayaprakashappa ◽  
Guillaume Thuery ◽  
Devam J Purohit ◽  
...  

Cells respond to stress with translational arrest, robust transcriptional changes, and transcription-independent formation of mRNP assemblies termed stress granules (SGs). Despite considerable interest in the role of SGs in oxidative, unfolded-protein and viral stress responses, whether and how SGs contribute to stress-induced transcription has not been rigorously examined. To address this, we characterized transcriptional changes in Drosophila S2 cells induced by acute oxidative-stress and assessed how these were altered under conditions that disrupted SG assembly. Oxidative stress for 3-hours predominantly resulted in induction or upregulation of stress-responsive mRNAs whose levels peaked during recovery after stress cessation. The stress-transcriptome is enriched in mRNAs coding for chaperones, including HSP70s, small heat shock proteins, glutathione transferases, and several non-coding RNAs. Oxidative stress also induced cytoplasmic SGs that disassembled 3-hours after stress cessation. As expected, RNAi-mediated knockdown of the conserved G3BP1/Rasputin protein inhibited SG assembly. However, this disruption had no significant effect on the stress-induced transcriptional response or stress-induced translational arrest. Thus, SG assembly and stress-induced gene expression alterations appear to be driven by distinctive signaling processes. We suggest that while SG assembly represents a fast, transient mechanism, the transcriptional response enables a slower, longer-lasting mechanism for adaptation to and recovery from cell stress.

2021 ◽  
Author(s):  
Amanjot Singh ◽  
Arvind Reddy Kandi ◽  
Deepa Jayaprakashappa ◽  
Guillaume Thuery ◽  
Devam J Purohit ◽  
...  

ABSTRACTCells respond to stress with translational arrest, robust transcriptional changes, and transcription-independent formation of mRNP assemblies termed stress granules (SGs). Despite considerable interest in the role of SGs in oxidative, unfolded-protein, and viral stress responses, whether and how SGs contribute to stress-induced transcription has not been rigorously examined. To address this issue, we characterized transcriptional changes in Drosophila S2 cells induced by acute oxidative-stress and assessed how these were altered under conditions that disrupted SG assembly. Sodium-arsenite stress for 3 hours predominantly resulted in the induction or upregulation of stress-responsive mRNAs whose levels peaked during cell recovery after stress cessation. The stress-transcriptome is enriched in mRNAs coding for protein chaperones, including HSP70 and low molecular-weight heat shock proteins, glutathione transferases, and several non-coding RNAs. Oxidative stress also induced prominent cytoplasmic stress granules that disassembled 3-hours after stress cessation. As expected, RNAi-mediated knockdown of the conserved G3BP1/ Rasputin protein inhibited stress-granule assembly. However, this disruption had no significant effect on the stress-induced transcriptional response or stress-induced translational arrest. Thus, SG assembly and stress-induced effects on gene expression appear to be driven by distinctive signaling processes. We suggest that while SG assembly represents a fast, transient mechanism, the transcriptional response enables a slower, longer-lasting mechanism for adaptation to and recovery from cell stress.


2004 ◽  
Vol 279 (50) ◽  
pp. 52390-52398 ◽  
Author(s):  
Steven P. Anderson ◽  
Paul Howroyd ◽  
Jie Liu ◽  
Xun Qian ◽  
Rainer Bahnemann ◽  
...  

The nuclear receptor peroxisome proliferator-activated receptor α (PPARα), in addition to regulating lipid homeostasis, controls the level of tissue damage after chemical or physical stress. To determine the role of PPARα in oxidative stress responses, we examined damage after exposure to chemicals that increase oxidative stress in wild-type or PPARα-null mice. Primary hepatocytes from wild-type but not PPARα-null mice pretreated with the PPAR pan-agonist WY-14,643 (WY) were protected from damage to cadmium and paraquat. The livers from intact wild-type but not PPARα-null mice were more resistant to damage after carbon tetrachloride treatment. To determine the molecular basis of the protection by PPARα, we identified by transcript profiling genes whose expression was altered by a 7-day exposure to WY in wild-type and PPARα-null mice. Of the 815 genes regulated by WY in wild-type mice (p≤ 0.001; ≥1.5-fold or ≤-1.5-fold), only two genes were regulated similarly by WY in PPARα-null mice. WY increased expression of stress modifier genes that maintain the health of the proteome, including those that prevent protein aggregation (heat stress-inducible chaperones) and eliminate damaged proteins (proteasome components). Although the induction of proteasomal genes significantly overlapped with those regulated by 1,2-dithiole-3-thione, an activator of oxidant-inducible Nrf2, WY increased expression of proteasomal genes independently of Nrf2. Thus, PPARα controls the vast majority of gene expression changes after exposure to WY in the mouse liver and protects the liver from oxidant-induced damage, possibly through regulation of a distinct set of proteome maintenance genes.


2015 ◽  
Vol 89 ◽  
pp. 401-408 ◽  
Author(s):  
Luis A. Videla ◽  
Virginia Fernández ◽  
Pamela Cornejo ◽  
Romina Vargas ◽  
Juan Carrasco ◽  
...  

2020 ◽  
Vol 21 (9) ◽  
pp. 3289 ◽  
Author(s):  
Hyeong Rok Yun ◽  
Yong Hwa Jo ◽  
Jieun Kim ◽  
Yoonhwa Shin ◽  
Sung Soo Kim ◽  
...  

Autophagy is a catabolic process for unnecessary or dysfunctional cytoplasmic contents by lysosomal degradation pathways. Autophagy is implicated in various biological processes such as programmed cell death, stress responses, elimination of damaged organelles and development. The role of autophagy as a crucial mediator has been clarified and expanded in the pathological response to redox signalling. Autophagy is a major sensor of the redox signalling. Reactive oxygen species (ROS) are highly reactive molecules that are generated as by-products of cellular metabolism, principally by mitochondria. Mitochondrial ROS (mROS) are beneficial or detrimental to cells depending on their concentration and location. mROS function as redox messengers in intracellular signalling at physiologically low level, whereas excessive production of mROS causes oxidative damage to cellular constituents and thus incurs cell death. Hence, the balance of autophagy-related stress adaptation and cell death is important to comprehend redox signalling-related pathogenesis. In this review, we attempt to provide an overview the basic mechanism and function of autophagy in the context of response to oxidative stress and redox signalling in pathology.


2017 ◽  
Vol 86 (2) ◽  
Author(s):  
Angelique N. Besold ◽  
Benjamin A. Gilston ◽  
Jana N. Radin ◽  
Christian Ramsoomair ◽  
Edward M. Culbertson ◽  
...  

ABSTRACT The opportunistic fungal pathogen Candida albicans acquires essential metals from the host, yet the host can sequester these micronutrients through a process known as nutritional immunity. How the host withholds metals from C. albicans has been poorly understood; here we examine the role of calprotectin (CP), a transition metal binding protein. When CP depletes bioavailable Zn from the extracellular environment, C. albicans strongly upregulates ZRT1 and PRA1 for Zn import and maintains constant intracellular Zn through numerous cell divisions. We show for the first time that CP can also sequester Cu by binding Cu(II) with subpicomolar affinity. CP blocks fungal acquisition of Cu from serum and induces a Cu starvation stress response involving SOD1 and SOD3 superoxide dismutases. These transcriptional changes are mirrored when C. albicans invades kidneys in a mouse model of disseminated candidiasis, although the responses to Cu and Zn limitations are temporally distinct. The Cu response progresses throughout 72 h, while the Zn response is short-lived. Notably, these stress responses were attenuated in CP null mice, but only at initial stages of infection. Thus, Zn and Cu pools are dynamic at the host-pathogen interface and CP acts early in infection to restrict metal nutrients from C. albicans.


2006 ◽  
Vol 13 (Supplement_1) ◽  
pp. S115-S124 ◽  
Author(s):  
E Tiligada

Eukaryotic cells, from yeast to mammals, respond and adapt to environmental and microenvironmental stressors by evolutionary conserved multicomponent endogenous systems that utilise a network of signal transduction pathways to regulate the adaptive and protective phenotype. The balance between cell survival and cell death is decisive for sensitivity or resistance to DNA-damaging chemotherapeutic agents. Anticancer drugs may themselves act as stressors to induce adaptive signals that could limit their clinical value. Related research has been focused on the modulation of the expression and function of the heat shock proteins, the unfolded protein response, the mechanisms of subcellular translocation of signalling components, the genomic and non-genomic actions of drugs and endogenous functional components like hormonal pathways, the input of inflammation and alterations in the microenvironmental milieu and on the control of the cell cycle and proliferation. The outcome seems to be driven by the first-line responses that support cellular integrity and by specific mechanisms that depend on the type of cell and the nature, and duration and severity of the noxious stimulus. Data obtained from experimental organisms like the yeast have added valuable information on the basic conservation in cellular stress-related processes in eukaryotes and on the consequences that may accompany the adaptive and protective phenotype during the stress response to anticancer agents. Understanding the complex molecular pathways mediating these processes has started to contribute to the reevaluation of the current therapeutic regiments and to revolutionise the approaches for improved anticancer therapy.


2006 ◽  
Vol 17 (2) ◽  
pp. 1018-1032 ◽  
Author(s):  
Brice Enjalbert ◽  
Deborah A. Smith ◽  
Michael J. Cornell ◽  
Intikhab Alam ◽  
Susan Nicholls ◽  
...  

The resistance of Candida albicans to many stresses is dependent on the stress-activated protein kinase (SAPK) Hog1. Hence we have explored the role of Hog1 in the regulation of transcriptional responses to stress. DNA microarrays were used to characterize the global transcriptional responses of HOG1 and hog1 cells to three stress conditions that activate the Hog1 SAPK: osmotic stress, oxidative stress, and heavy metal stress. This revealed both stress-specific transcriptional responses and a core transcriptional response to stress in C. albicans. The core transcriptional response was characterized by a subset of genes that responded in a stereotypical manner to all of the stresses analyzed. Inactivation of HOG1 significantly attenuated transcriptional responses to osmotic and heavy metal stresses, but not to oxidative stress, and this was reflected in the role of Hog1 in the regulation of C. albicans core stress genes. Instead, the Cap1 transcription factor plays a key role in the oxidative stress regulation of C. albicans core stress genes. Our data show that the SAPK network in C. albicans has diverged from corresponding networks in model yeasts and that the C. albicans SAPK pathway functions in parallel with other pathways to regulate the core transcriptional response to stress.


2011 ◽  
Vol 176 (2) ◽  
pp. 90-97 ◽  
Author(s):  
Akruti Patel ◽  
Agnieszka Nawrocka Chojnowski ◽  
Katie Gaskill ◽  
William De Martini ◽  
Ronald L. Goldberg ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document