A new way to quickly estimate climate change impacts on rivers and streams

Author(s):  
Julie A. Vano ◽  
Meghan M. Dalton

We outline a new method that offers quick insights into how the amount of water in rivers and streams will be impacted by warmer temperatures and future precipitation change. This method yields comparable results to more conventional model-intense climate change impact studies and is faster and cheaper to implement, making it a practical alternative for those exploring future water supply changes in places with limited computational access. Using rivers and streams in the Pacific Northwest of North America as an example, we share what this new method can (and cannot) do, and highlight the steps one could take to quickly begin exploring how climate change could impact their water supply.

2011 ◽  
Vol 15 (5) ◽  
pp. 1427-1443 ◽  
Author(s):  
A. F. Hamlet

Abstract. Climate change impacts in Pacific Northwest Region of North America (PNW) are projected to include increasing temperatures and changes in the seasonality of precipitation (increasing precipitation in winter, decreasing precipitation in summer). Changes in precipitation are also spatially varying, with the northwestern parts of the region generally experiencing greater increases in cool season precipitation than the southeastern parts. These changes in climate are projected to cause loss of snowpack and associated streamflow timing shifts which will increase cool season (October–March) flows and decrease warm season (April–September) flows and water availability. Hydrologic extremes such as the 100 yr flood and extreme low flows are also expected to change, although these impacts are not spatially homogeneous and vary with mid-winter temperatures and other factors. These changes have important implications for natural ecosystems affected by water, and for human systems. The PNW is endowed with extensive water resources infrastructure and well-established and well-funded management agencies responsible for ensuring that water resources objectives (such as water supply, water quality, flood control, hydropower production, environmental services, etc.) are met. Likewise, access to observed hydrological, meteorological, and climatic data and forecasts is in general exceptionally good in the United States and Canada, and is often supported by federally funded programs that ensure that these resources are freely available to water resources practitioners, policy makers, and the general public. Access to these extensive resources support the argument that at a technical level the PNW has high capacity to deal with the potential impacts of natural climate variability on water resources. To the extent that climate change will manifest itself as moderate changes in variability or extremes, we argue that existing water resources infrastructure and institutional arrangements provide a reasonably solid foundation for coping with climate change impacts, and that the mandates of existing water resources policy and water resources management institutions are at least consistent with the fundamental objectives of climate change adaptation. A deeper inquiry into the underlying nature of PNW water resources systems, however, reveals significant and persistent obstacles to climate change adaptation, which will need to be overcome if effective use of the region's extensive water resources management capacity can be brought to bear on this problem. Primary obstacles include assumptions of stationarity as the fundamental basis of water resources system design, entrenched use of historical records as the sole basis for planning, problems related to the relatively short time scale of planning, lack of familiarity with climate science and models, downscaling procedures, and hydrologic models, limited access to climate change scenarios and hydrologic products for specific water systems, and rigid water allocation and water resources operating rules that effectively block adaptive response. Institutional barriers include systematic loss of technical capacity in many water resources agencies following the dam building era, jurisdictional fragmentation affecting response to drought, disconnections between water policy and practice, and entrenched bureaucratic resistance to change in many water management agencies. These factors, combined with a federal agenda to block climate change policy in the US during the Bush administration have (with some exceptions) contributed to widespread institutional "gridlock" in the PNW over the last decade or so despite a growing awareness of climate change as a significant threat to water management. In the last several years, however, significant progress has been made in surmounting some of these obstacles, and the region's water resources agencies at all levels of governance are making progress in addressing the fundamental challenges inherent in adapting to climate change.


2010 ◽  
Vol 7 (4) ◽  
pp. 4437-4471 ◽  
Author(s):  
A. F. Hamlet

Abstract. Climate change impacts in Pacific Northwest Region of North America (PNW) are projected to include increasing temperatures and changes in the seasonality of precipitation (increasing precipitation in winter, decreasing precipitation in summer). Changes in precipitation are also spatially varying, with the northwestern parts of the region generally experiencing greater increases in cool season precipitation than the southeastern parts. These changes in climate are projected to cause loss of snowpack and associated streamflow timing shifts which will increase cool season (October–March) flows and decrease warm season (April–September) flows and water availability. Hydrologic extremes such as the 100 year flood and extreme low flows are also expected to change, although these impacts are not spatially homogeneous and vary with mid-winter temperatures and other factors. These changes have important implications for natural ecosystems affected by water, and for human systems. The PNW is endowed with extensive water resources infrastructure and well-established and well-funded management agencies responsible for ensuring that water resources objectives (such as water supply, water quality, flood control, hydropower production, environmental services, etc.) are met. Likewise, access to observed hydrological, meteorological, and climatic data and forecasts is in general exceptionally good in the United States and Canada, and access to these products and services is often supported by federally funded programs that ensure that these resources are available to water resources practitioners, policy makers, and the general public. Access to these extensive resources support the argument that at a technical level the PNW has high capacity to deal with the potential impacts of natural climate variability on water resources. To the extent that climate change will manifest itself as moderate changes in variability or extremes, we argue that existing water resources infrastructure and institutional arrangements provide a solid foundation for coping with climate change impacts, and that the mandates of existing water resources policy and water resources management institutions are at least consistent with the fundamental objectives of climate change adaptation. A deeper inquiry into the underlying nature of PNW water resources systems, however, reveals significant and persistent obstacles to climate change adaptation, which will need to be overcome if effective use of the region's extensive water resources management capacity can be brought to bear on this problem. Primary obstacles include assumptions of stationarity as the fundamental basis of water resources system design, entrenched use of historic records as the sole basis for planning, problems related to the relatively short time scale of planning, lack of familiarity with climate science and models, downscaling procedures, and hydrologic models, limited access to climate change scenarios and hydrologic products for specific water systems, and rigid water allocation and water resources operating rules that effectively block adaptive response. Institutional barriers include systematic loss of technical capacity in many water resources agencies following the dam building era, jurisdictional fragmentation affecting response to drought, disconnections between water policy and practice, and entrenched bureaucratic resistance to change in many water management agencies. These factors, combined with a federal agenda to block climate change policy in the US during the Bush administration has (with some exceptions) led to institutional "gridlock" in the PNW over the last decade or so despite a growing awareness of climate change as a significant threat to water management. In the last several years, however, significant progress has been made in surmounting these obstacles, and the region's water resources agencies at all levels of governance are making progress in addressing the fundamental challenges inherent in adapting to climate change.


2018 ◽  
Vol 48 (4) ◽  
pp. 421-430 ◽  
Author(s):  
K.M. Littke ◽  
D. Zabowski ◽  
E. Turnblom ◽  
R.B. Harrison

Douglas-fir forests of the coastal Pacific Northwest experience yearly summer droughts; however, the variation in shallow soil available water supply throughout the region is not well understood nor is the effect of future climate change. Soil moisture sensors were installed in 60 Douglas-fir plantation forests over 6 years. Stands were grouped by physiographic regions to describe differences in climate and available water supply. Monthly available water supply (MAWS) (0–50 cm) was calculated as the average daily available moisture content. MAWS was modeled using monthly climate variables, and the equation was then used to predict the change in MAWS due to mild, moderate, and severe climate change predictions. Regional monthly air temperature and precipitation were strongly predictive of MAWS. Mild to severe climate change are predicted to decrease yearly available water supply by 8% to 19%, while summer available water supply will decrease from 25% to 72%. The greatest decreases due to climate change will be found in the coastal regions of Washington and Oregon due to greater negative effects of temperature on available water supply. Climate change, especially the most severe predictions, was shown to have a sizeable effect on shallow soil available water supply in coastal Douglas-fir forests.


2004 ◽  
Vol 5 (1) ◽  
pp. 16
Author(s):  
Dean A. Glawe

Chinese matrimony-vine (Lycium chinense Mill.) is a traditional medicinal plant grown in China and used as a perennial landscape plant in North America. This report documents the presence of powdery mildew on L. chinense in the Pacific Northwest and describes and illustrates morphological features of the causal agent. It appears to be the first report of a powdery mildew caused by Arthrocladiella in the Pacific Northwest. Accepted for publication 10 November 2004. Published 8 December 2004.


Sign in / Sign up

Export Citation Format

Share Document