Hot Planetary Coronas

Author(s):  
Valery I. Shematovich ◽  
Dmitry V. Bisikalo

This is an advance summary of a forthcoming article in the Oxford Research Encyclopedia of Planetary Science. Please check back later for the full article. The uppermost layers of a planetary atmosphere, where the density of neutral particles is vanishingly low, are commonly called the exosphere or the planetary corona. Since the atmosphere is not completely bound to the planet by the planetary gravitational field, light atoms, such as hydrogen and helium with sufficiently large velocities, can escape from the upper atmosphere into interplanetary space. This process is commonly called Jeans escape, and it depends on the temperature of the ambient atmospheric gas at an altitude where the atmospheric gas is virtually collisionless. The heavier carbon, nitrogen, and oxygen atoms can escape from the atmospheres of the terrestrial planets only through non-thermal processes such as photo- and electron-impact dissociation, charge exchange, atmospheric sputtering, and ion pick-up. Theories of planetary exospheres have been based on ground-based and space observations of emission features such as the 121.6 nm Ly-α and 102.6 nm Ly-β hydrogen lines, the 58.4 nm helium line, and the 130.4 and 135.6 nm atomic oxygen lines. Such observations, together with in situ mass-spectrometer measurements, as at Titan, allow the density and temperature height profiles of the exospheric components to be constructed. The measurements reveal that planetary coronas contain both a fraction of thermal neutral particles with a mean kinetic energy corresponding to the exospheric temperature and a fraction of hot neutral particles with mean kinetic energy much higher than the exospheric temperature. These suprathermal (hot) atoms and molecules are a direct manifestation of the non-thermal processes taking place in the atmospheres. These hot particles lead to the atmospheric escape, determine the coronal structure, produce non-thermal emissions, and react with the ambient atmospheric gas triggering hot atom chemistry. One of the brightest manifestations of these processes is a formation of hot oxygen corona around terrestrial planets. Oxygen atom is one of the lightest among heavy atmospheric species, so it is a best species to form corona, and another important aspect is that it produces a lot of observational evidence. The transport of suprathermal oxygen atoms to exospheric heights leads to the formation of hot oxygen coronas around Venus, Earth, and Mars. It has been well established by both observations and theoretical calculations that hot oxygen is an important constituent in the transition region between upper thermosphere and exosphere at terrestrial planets. The study of the planetary coronas is based on direct observations and numerical simulations. It is a rarefied gas, therefore, production and transport of suprathermal particles into the corona requires solving a Boltzmann equation or a DSMC simulation. The stochastic simulation method had been widely used to investigate the formation, kinetics, and transport of suprathermal particles in the hot planetary coronas. This approach was first used to study the formation of the hot oxygen geocorona, taking into account the exothermic chemistry and the precipitation of magnetospheric protons and high-energy O+ ions from the ring current. It was found that only atmospheric sputtering results in the formation of the escape flux of energetic oxygen atoms, providing an important source of heavy atoms for the magnetosphere and geospace. A stochastic modeling approach was also applied to study the escape of hot oxygen atoms from the upper atmosphere of Mars and Venus; the kinetics and transport of suprathermal atoms and molecules in the hot oxygen corona at Jovian satellite Europa, which is an example of a highly non-equilibrium near-surface atmosphere; and the hot extended corona at Saturnian satellite Titan, which was directly measured by the spacecraft Cassini.

1981 ◽  
Vol 8 (6) ◽  
pp. 629-632 ◽  
Author(s):  
A. F. Nagy ◽  
T. E. Cravens ◽  
J-H. Yee ◽  
A. I. F. Stewart

2021 ◽  
Vol 37 (3) ◽  
Author(s):  
V. S. Travkin ◽  
◽  
T. V. Belonenko ◽  

Purpose. The Lofoten Basin is one of the most energetic zones of the World Ocean characterized by high activity of mesoscale eddies. The study is aimed at analyzing different components of general energy in the basin, namely the mean kinetic and vortex kinetic energy calculated using the integral of the volume of available potential and kinetic energy of the Lofoten Vortex, as well as variability of these characteristics. Methods and Results. GLORYS12V1 reanalysis data for the period 2010–2018 were used. The mean kinetic energy and the eddy kinetic one were analyzed; and as for the Lofoten Vortex, its volume available potential and kinetic energy were studied. The mesoscale activity of eddies in winter is higher than in summer. Evolution of the available potential energy and kinetic energy of the Lofoten Vortex up to the 1000 m horizon was studied. It is shown that the vortex available potential energy exceeds the kinetic one by an order of magnitude, and there is a positive trend with the coefficient 0,23⋅1015 J/year. It was found that in the Lofoten Basin, the intermediate layer from 600 to 900 m made the largest contribution to the potential energy, whereas the 0–400 m layer – to kinetic energy. The conversion rates of the mean kinetic energy into the vortex kinetic one and the mean available potential energy into the vortex available potential one (barotropic and baroclinic instability) were analyzed. It is shown that the first type of transformation dominates in summer, while the second one is characterized by its increase in winter. Conclusions. The vertical profile shows that the kinetic energy of eddies in winter is higher than in summer. The available potential energy of a vortex is by an order of magnitude greater than the kinetic energy. An increase in the available potential energy is confirmed by a significant positive trend and by a decrease in the vortex Burger number. The graphs of the barotropic instability conversion rate demonstrate the multidirectional flows in the vortex zone with the dipole structure observed in a winter period, and the tripole one – in summer. The barotropic instability highest intensity is observed in summer. The baroclinic instability is characterized by intensification of the regime in winter that is associated with weakening of stratification in this period owing to winter convection.


Author(s):  
Kusalika Ariyarathne ◽  
Kuang-An Chang ◽  
Richard Mercier

Impact pressure due to plunging breaking waves impinging on a simplified model structure was investigated in the laboratory based on two breaking wave conditions: the wall impingement wave condition and the deck impingement wave condition. Pressure, void fraction, and velocities were measured at various locations on the deck surface. Impact pressure was correlated with the mean kinetic energy calculated based on the measured mean velocities and void fraction to obtain the impact coefficient. For the wall impingement wave condition, the relationship between impact pressure and mean kinetic energy is linear with the impact coefficient close to unity. For the deck impingement wave condition, the above relationship does not show good correlation, whereas the impact coefficient was found to be a function of the rate of pressure rise.


Ocean Science ◽  
2011 ◽  
Vol 7 (4) ◽  
pp. 503-519 ◽  
Author(s):  
R. Sorgente ◽  
A. Olita ◽  
P. Oddo ◽  
L. Fazioli ◽  
A. Ribotti

Abstract. The spatial and temporal variability of eddy and mean kinetic energy of the Central Mediterranean region has been investigated, from January 2008 to December 2010, by mean of a numerical simulation mainly to quantify the mesoscale dynamics and their relationships with physical forcing. In order to understand the energy redistribution processes, the baroclinic energy conversion has been analysed, suggesting hypotheses about the drivers of the mesoscale activity in this area. The ocean model used is based on the Princeton Ocean Model implemented at 1/32° horizontal resolution. Surface momentum and buoyancy fluxes are interactively computed by mean of standard bulk formulae using predicted model Sea Surface Temperature and atmospheric variables provided by the European Centre for Medium Range Weather Forecast operational analyses. At its lateral boundaries the model is one-way nested within the Mediterranean Forecasting System operational products. The model domain has been subdivided in four sub-regions: Sardinia channel and southern Tyrrhenian Sea, Sicily channel, eastern Tunisian shelf and Libyan Sea. Temporal evolution of eddy and mean kinetic energy has been analysed, on each of the four sub-regions, showing different behaviours. On annual scales and within the first 5 m depth, the eddy kinetic energy represents approximately the 60 % of the total kinetic energy over the whole domain, confirming the strong mesoscale nature of the surface current flows in this area. The analyses show that the model well reproduces the path and the temporal behaviour of the main known sub-basin circulation features. New mesoscale structures have been also identified, from numerical results and direct observations, for the first time as the Pantelleria Vortex and the Medina Gyre. The classical kinetic energy decomposition (eddy and mean) allowed to depict and to quantify the permanent and fluctuating parts of the circulation in the region, and to differentiate the four sub-regions as function of relative and absolute strength of the mesoscale activity. Furthermore the Baroclinic Energy Conversion term shows that in the Sardinia Channel the mesoscale activity, due to baroclinic instabilities, is significantly larger than in the other sub-regions, while a negative sign of the energy conversion, meaning a transfer of energy from the Eddy Kinetic Energy to the Eddy Available Potential Energy, has been recorded only for the surface layers of the Sicily Channel during summer.


2011 ◽  
Vol 8 (3) ◽  
pp. 1161-1214 ◽  
Author(s):  
R. Sorgente ◽  
A. Olita ◽  
P. Oddo ◽  
L. Fazioli ◽  
A. Ribotti

Abstract. The spatial and temporal variability of eddy and mean kinetic energy of the Central Mediterranean Sea has been investigated, from January 2008 to December 2010, by mean of a numerical simulation mainly to quantify the mesoscale dynamics and their relationships with physical forcing. In order to understand the energy redistribution processes, the baroclinic energy conversion has been analysed, suggesting hypotheses about the drivers of the mesoscale activity in this area. The ocean model used is based on the Princeton Ocean Model implemented at 1/32° horizontal resolution. Surface momentum and buoyancy fluxes are interactively computed by mean of standard bulk formulae using predicted model Sea Surface Temperature and atmospheric variables provided by the European Centre for Medium Range Weather Forecast operational analyses. At its lateral boundaries the model is one-way nested within the Mediterranean Forecasting System operational products. The model domain has been subdivided in four sub-regions: Sardinia channel and southern Tyrrhenian Sea, Sicily channel, eastern Tunisian shelf and Libyan Sea. Temporal evolution of eddy and mean kinetic energy has been analysed, on each of the four sub-regions composing the model domain, showing different behaviours. On annual scales and within the first 5 m depth, the eddy kinetic energy represents approximately the 60 % of the total kinetic energy over the whole domain, confirming the strong mesoscale nature of the surface current flows in this area. The analyses show that the model well reproduces the path and the temporal behaviour of the main known sub-basin circulation features. New mesoscale structures have been also identified, from numerical results and direct observations, for the first time as the Pantelleria Vortex and the Medina Gyre. The classical the kinetic energy decomposition (eddy and mean) allowed to depict and to quantify the stable and fluctuating parts of the circulation in the region, and to differentiate the four sub-regions as function of relative and absolute strength of the mesoscale activity. Furthermore the Baroclinic Energy Conversion term shows that in the Sardinia Channel the mesoscale activity, due to baroclinic instabilities, is significantly larger than in the other sub-regions, while a negative sign of the energy conversion, meaning a transfer of energy from the Eddy Kinetic Energy to the Eddy Available Potential Energy, has been recorded only for the surface layers of the Sicily Channel during summer.


Author(s):  
Edik Dubinin ◽  
Janet G. Luhmann ◽  
James A. Slavin

Knowledge about the solar wind interactions of Venus, Mars, and Mercury is rapidly expanding. While the Earth is also a terrestrial planet, it has been studied much more extensively and in far greater detail than its companions. As a result we direct the reader to specific references on that subject for obtaining an accurate comparative picture. Due to the strength of the Earth’s intrinsic dipole field, a relatively large volume is carved out in interplanetary space around the planet and its atmosphere. This “magnetosphere” is regarded as a shield from external effects, but in actuality much energy and momentum are channeled into it, especially at high latitudes, where the frequent interconnection between the Earth’s magnetic field and the interplanetary field allows some access by solar wind particles and electric fields to the upper atmosphere and ionosphere. Moreover, reconnection between oppositely directed magnetic fields occurs in Earth’s extended magnetotail—producing a host of other phenomena including injection of a ring current of energized internal plasma from the magnetotail into the inner magnetosphere—creating magnetic storms and enhancements in auroral activity and related ionospheric outflows. There are also permanent, though variable, trapped radiation belts that strengthen and decay with the rest of magnetospheric activity—depositing additional energy into the upper atmosphere over a wider latitude range. Virtually every aspect of the Earth’s solar wind interaction, highly tied to its strong intrinsic dipole field, has its own dedicated textbook chapters and review papers. Although Mercury, Venus, Earth, and Mars belong to the same class of rocky terrestrial planets, their interaction with solar wind is very different. Earth and Mercury have the intrinsic, mainly dipole magnetic field, which protects them from direct exposure by solar wind. In contrast, Venus and Mars have no such shield and solar wind directly impacts their atmospheres/ionospheres. In the first case, intrinsic magnetospheric cavities with a long tail are found. In the second case, magnetospheres are also formed but are generated by the electric currents induced in the conductive ionospheres. The interaction of solar wind with terrestrial planets also varies due to changes caused by different distances to the Sun and large variations in solar irradiance and solar wind parameters. Other important planetary differences like local strong crustal magnetization on Mars and almost total absence of the ionosphere on Mercury create new essential features to the interaction pattern. Solar wind might be also a feasible driver for planetary atmospheric losses of volatiles, which could historically affect the habitability of the terrestrial planets.


2020 ◽  
Vol 533 ◽  
pp. 110716
Author(s):  
Y. Finkelstein ◽  
D. Nemirovsky ◽  
R. Moreh

Sign in / Sign up

Export Citation Format

Share Document