AdS3 Gravity and Holography

Author(s):  
Per Kraus

General relativity in three spacetime dimensions is a simplified model of gravity, possessing no local degrees of freedom, yet rich enough to admit black-hole solutions and other phenomena of interest. In the presence of a negative cosmological constant, the asymptotically anti–de Sitter (AdS) solutions admit a symmetry algebra consisting of two copies of the Virasoro algebra, with central charge inversely proportional to Newton’s constant. The study of this theory is greatly enriched by the AdS/CFT correspondence, which in this case implies a relationship to two-dimensional conformal field theory. General aspects of this theory can be understood by focusing on universal properties such as symmetries. The best understood examples of the AdS3/CFT2 correspondence arise from string theory constructions, in which case the gravity sector is accompanied by other propagating degrees of freedom. A question of recent interest is whether pure gravity can be made sense of as a quantum theory of gravity with a holographic dual. Attempting to answer this question requires making sense of the path integral over asymptotically AdS3 geometries.

2006 ◽  
Vol 21 (24) ◽  
pp. 1879-1887 ◽  
Author(s):  
MARIANO CADONI

We derive the statistical entropy of the Schwarzschild black hole by considering the asymptotic symmetry algebra near the [Formula: see text] boundary of the spacetime at past null infinity. Using a two-dimensional description and the Weyl invariance of black hole thermodynamics this symmetry algebra can be mapped into the Virasoro algebra generating asymptotic symmetries of anti-de Sitter spacetime. Using Lagrangian methods we identify the stress–energy tensor of the boundary conformal field theory and calculate the central charge of the Virasoro algebra. The Bekenstein–Hawking result for the black hole entropy is regained using Cardy's formula. Our result strongly supports a nonlocal realization of the holographic principle.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Yi Li ◽  
Yang Zhou

Abstract In this article we probe the proposed holographic duality between $$ T\overline{T} $$ T T ¯ deformed two dimensional conformal field theory and the gravity theory of AdS3 with a Dirichlet cutoff by computing correlators of energy-momentum tensor. We focus on the large central charge sector of the $$ T\overline{T} $$ T T ¯ CFT in a Euclidean plane and a sphere, and compute the correlators of energy-momentum tensor using an operator identity promoted from the classical trace relation. The result agrees with a computation of classical pure gravity in Euclidean AdS3 with the corresponding cutoff surface, given a holographic dictionary which identifies gravity parameters with $$ T\overline{T} $$ T T ¯ CFT parameters.


2011 ◽  
Vol 26 (18) ◽  
pp. 3077-3090 ◽  
Author(s):  
BRADLY K. BUTTON ◽  
LEO RODRIGUEZ ◽  
CATHERINE A. WHITING ◽  
TUNA YILDIRIM

We show that the near horizon regime of a Kerr–Newman AdS (KNAdS) black hole, given by its two-dimensional analogue a là Robinson and Wilczek (Phys. Rev. Lett.95, 011303 (2005)), is asymptotically AdS2 and dual to a one-dimensional quantum conformal field theory (CFT). The s-wave contribution of the resulting CFT's energy–momentum tensor together with the asymptotic symmetries, generate a centrally extended Virasoro algebra, whose central charge reproduces the Bekenstein–Hawking entropy via Cardy's formula. Our derived central charge also agrees with the near extremal Kerr/CFT correspondence (Phys. Rev. D80, 124008 (2009)) in the appropriate limits. We also compute the Hawking temperature of the KNAdS black hole by coupling its Robinson and Wilczek two-dimensional analogue (RW2DA) to conformal matter.


2000 ◽  
Vol 15 (06) ◽  
pp. 915-926 ◽  
Author(s):  
MARINA HUERTA

Two classes of Conformal Field Theories have been proposed to describe the Hierarchical Quantum Hall Effect: the multicomponent bosonic theory, characterized by the symmetry [Formula: see text] and the W1+∞ minimal models with central charge c=m. In spite of having the same spectrum of edge excitations, they manifest differences in the degeneracy of the states and in the quantum statistics, which call for a more detailed comparison between them. Here, we describe their detailed relation for the general case, c=m and extend the methods previously published for c≤3. Specifically, we obtain the reduction in the number of degrees of freedom from the multicomponent Abelian theory to the minimal models by decomposing the characters of the [Formula: see text] representations into those of the c=mW1+∞ minimal models. Furthermore, we find the Hamiltonian whose renormalization group flow interpolates between the two models, having the W1+∞ minimal models as an infrared fixed point.


2015 ◽  
Vol 2015 ◽  
pp. 1-7
Author(s):  
Akram Sadat Sefiedgar

The emergence of the quantum gravitational effects in a very high energy regime necessitates some corrections to the thermodynamics of black holes. In this letter, we investigate a possible modification to the thermodynamics of Schwarzschild anti-de Sitter (SAdS) black holes due to rainbow gravity model. Using the correspondence between a (d+1)-dimensional SAdS black hole and a conformal filed theory ind-dimensional spacetime, one may find the corrections to the Cardy-Verlinde formula from the modified thermodynamics of the black hole. Furthermore, we show that the corrected Cardy-Verlinde formula can also be derived by redefining the Virasoro operator and the central charge.


2016 ◽  
Vol 31 (12) ◽  
pp. 1650073
Author(s):  
Davood Momeni ◽  
Muhammad Raza ◽  
Ratbay Myrzakulov

A metric is proposed to explore the noncommutative form of the anti-de Sitter (AdS) space due to quantum effects. It has been proved that the noncommutativity in AdS space induces a single component gravitoelectric field. The holographic Ryu–Takayanagi (RT) algorithm is then applied to compute the entanglement entropy (EE) in dual CFT2. This calculation can be exploited to compute ultraviolet–infrared (UV–IR) cutoff dependent central charge of the certain noncommutative CFT2. This noncommutative computation of the EE can be interpreted in the form of the surface/state correspondence. We have shown that noncommutativity increases the dimension of the effective Hilbert space of the dual conformal field theory (CFT).


1992 ◽  
Vol 07 (03) ◽  
pp. 591-617 ◽  
Author(s):  
JOSÉ M. FIGUEROA-O'FARRILL ◽  
STANY SCHRANS

We undertake a systematic study of the possible extensions of the N = 1 super Virasoro algebra by a superprimary field of spin [Formula: see text]. Besides new extensions, which exist only for specific values of the central charge, we find a new nonlinear algebra (super W2) generated by a spin 2 superprimary which is associative for all values of the central charge. Furthermore, the spin 3 extension is argued to be the symmetry algebra of the m = 6 super Virasoro unitary minimal model, by exhibiting the (A7, D4)-type modular invariant as diagonal in terms of extended characters.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Hao Geng ◽  
Severin Lüst ◽  
Rashmish K. Mishra ◽  
David Wakeham

Abstract We study the AdS/BCFT duality between two-dimensional conformal field theories with two boundaries and three-dimensional anti-de Sitter space with two Karch-Randall branes. We compute the entanglement entropy of a bipartition of the BCFT, on both the gravity side and the field theory side. At finite temperature this entanglement entropy characterizes the communication between two braneworld black holes, coupled to each other through a common bath. We find a Page curve consistent with unitarity. The gravitational result, computed using double-holographically realized quantum extremal surfaces, matches the conformal field theory calculation.At zero temperature, we obtain an interesting extension of the AdS3/BCFT2 correspondence. For a central charge c, we find a gap $$ \left(\frac{c}{16},\frac{c}{12}\right) $$ c 16 c 12 in the spectrum of the scaling dimension ∆bcc of the boundary condition changing operator (which interpolates mismatched boundary conditions on the two boundaries of the BCFT). Depending on the value of ∆bcc, the gravitational dual is either a defect global AdS3 geometry or a single sided black hole, and in both cases there are two Karch-Randall branes.


Science ◽  
2020 ◽  
Vol 370 (6513) ◽  
pp. 198-202
Author(s):  
Mark Van Raamsdonk

In the anti–de Sitter/conformal field theory approach to quantum gravity, the spacetime geometry and gravitational physics of states in some quantum theory of gravity are encoded in the quantum states of an ordinary nongravitational system. Here, I demonstrate that this nongravitational system can be replaced with an arbitrarily large collection of noninteracting systems (“bits”) placed in a highly entangled state. This construction makes manifest the idea that spacetime geometry emerges from entanglement between the fundamental degrees of freedom of quantum gravity and that removing this entanglement is tantamount to disintegrating spacetime. This setup also reveals that the entangled states encoding spacetimes may be well represented by a certain type of tensor network in which the individual tensors are associated with states of small numbers of bits.


Author(s):  
Xun Liu ◽  
Tsukasa Tada

Abstract We reexamine two-dimensional Lorentzian conformal field theory using the formalism previously developed in a study of sine-square deformation of Euclidean conformal field theory. We construct three types of Virasoro algebra. One of them reproduces the result by Lüscher and Mack, while another type exhibits divergence in the central charge term. The third leads to a continuous spectrum and contains no closed time-like curve in the system.


Sign in / Sign up

Export Citation Format

Share Document