9. Nanochemistry

Author(s):  
Graham Patrick

Nanochemistry involves the synthesis of molecular nanostructures measuring 1–100nm. These could serve as molecular components for nanorobots and other molecular devices that could be used in medicine, analysis, synthesis, electronics, data storage, or material science. ‘Nanochemistry’ describes the carbon allotropes of diamond, graphite (including the single-layer graphene), and fullerenes and looks at their properties and potential applications. It then considers nanotubes, which are useful in nanoelectronic circuitry as insulators, semiconductors, or conductors; rotaxanes and their potential as molecular switches; nanoparticles and nanostructures constructed from DNA; and examples of nanodevices and nanomachines. It ends with a discussion of the safety and toxicology issues of nanotechnology.

2013 ◽  
Vol 790 ◽  
pp. 7-10 ◽  
Author(s):  
Hui Gao ◽  
Yin Zhang

Recently, oxidized chemical vapor deposition (CVD) growth graphene has drawn much attention due to its potential applications in the field of optoelectronics. In this article, we report a simple, scalable and efficient method to synthesize oxidized CVD growth single-layer graphene by the strong acid treatment. The results indicate that oxidation process successfully introduced more defects and oxygen-containing groups into the lattice of graphene.


2018 ◽  
Vol 6 (2) ◽  
pp. 324-348 ◽  
Author(s):  
Yujie Wei ◽  
Ronggui Yang

Abstract The super-high strength of single-layer graphene has attracted great interest. In practice, defects resulting from thermodynamics or introduced by fabrication, naturally or artificially, play a pivotal role in the mechanical behaviors of graphene. More importantly, high strength is just one aspect of the magnificent mechanical properties of graphene: its atomic-thin geometry not only leads to ultra-low bending rigidity, but also brings in many other unique properties of graphene in terms of mechanics in contrast to other carbon allotropes, including fullerenes and carbon nanotubes. The out-of-plane deformation is of a ‘soft’ nature, which gives rise to rich morphology and is crucial for morphology control. In this review article, we aim to summarize current theoretical advances in describing the mechanics of defects in graphene and the theory to capture the out-of-plane deformation. The structure–mechanical property relationship in graphene, in terms of its elasticity, strength, bending and wrinkling, with or without the influence of imperfections, is presented.


2019 ◽  
Vol 33 (31) ◽  
pp. 1950384
Author(s):  
Di Lu ◽  
Yu-E Yang ◽  
Weichun Zhang ◽  
Caixia Wang ◽  
Jining Fang ◽  
...  

We have investigated Raman spectra of the G and 2D lines of a single-layer graphene (SLG) with metallic contacts. The shift of the G and 2D lines is correlated to two different factors. Before performing annealing treatment or annealing under low temperature, the electron transfer on graphene surface is dominated by nonuniform strain effect. As the annealing treatment is enhanced, however, a suitable annealing treatment can eliminate the nonuniform strain effect where the relative work function (WF) between graphene and metal becomes a main factor to determine electronic transfer. Moreover, it is confirmed that the optimized annealing treatment can also decrease effectively the structural defect and induced disorder in graphene due to metallic contacts.


2021 ◽  
Vol 7 (9) ◽  
pp. eabf0116
Author(s):  
Shiqi Huang ◽  
Shaoxian Li ◽  
Luis Francisco Villalobos ◽  
Mostapha Dakhchoune ◽  
Marina Micari ◽  
...  

Etching single-layer graphene to incorporate a high pore density with sub-angstrom precision in molecular differentiation is critical to realize the promising high-flux separation of similar-sized gas molecules, e.g., CO2 from N2. However, rapid etching kinetics needed to achieve the high pore density is challenging to control for such precision. Here, we report a millisecond carbon gasification chemistry incorporating high density (>1012 cm−2) of functional oxygen clusters that then evolve in CO2-sieving vacancy defects under controlled and predictable gasification conditions. A statistical distribution of nanopore lattice isomers is observed, in good agreement with the theoretical solution to the isomer cataloging problem. The gasification technique is scalable, and a centimeter-scale membrane is demonstrated. Last, molecular cutoff could be adjusted by 0.1 Å by in situ expansion of the vacancy defects in an O2 atmosphere. Large CO2 and O2 permeances (>10,000 and 1000 GPU, respectively) are demonstrated accompanying attractive CO2/N2 and O2/N2 selectivities.


2021 ◽  
Vol 18 (3) ◽  
pp. 316-320 ◽  
Author(s):  
Heejin Lim ◽  
Sun Young Lee ◽  
Yereum Park ◽  
Hyeonggyu Jin ◽  
Daeha Seo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document