scholarly journals Evaluation of Microbial and Conventional Insecticides for Control of Larval European Corn Borer on Whorl Stage Corn, Clay Center, Ne, 1995

1996 ◽  
Vol 21 (1) ◽  
pp. 218-218
Author(s):  
Terry A. DeVries ◽  
Robert J. Wright

Abstract Bacillus thuringiensis formulations and conventional insecticides were evaluated for efficacy against larval ECB in whorl stage field corn. All plots were planted without soil insecticide on 16 May. The experimental design was a RCB with 4 replicates. Each plot consisted of a single row, 40 ft long with a 30-inch row spacing. Plots were artificially infested with black-head stage ECB egg masses. The egg masses were deposited on wax paper discs, precounted in the laboratory and placed in the whorl of the infested plants on 30 Jun and 9 Jul. Crop growth stage was 37 and 57 inches extended leaf height, respectively. The same 5 plants in each treatment replicate were infested with 10 egg masses per infestation date. All granular insecticides were applied on 13 Jul. Environmental conditions were: air temperature, 81°F; wind direction and speed, west (250°) at 7 mph; relative humidity, 53%; and crop growth stage, 63 inches extended leaf height. A 10-inch Almaco smooth belt cone rear mounted on a Hahn Hi-Boy was used to apply preweighed amounts of the granular insecticides over the top of the plant whorls (G). Liquid insecticides were applied on 15 Jul. Environmental conditions were: air temperature, 74°F; wind direction and speed, east (80°) at 5 mph; relative humidity, 76%; and crop growth stage, 67 inches extended leaf height. A CO2 pressurized backpack sprayer at 30 psi was used to apply a band application over the top of the whorl (total spray volume = 1050 ml/plot) of premeasured amounts of the liquid insecticides (L). All infested plants were evaluated for ECB larval feeding damage on 14-15 Aug. The stalks of the infested plants were split lengthwise and the accumulated length and number of cavities in the 5 plants per treatment replicate were used to evaluate ECB larval damage. The percent infestation at evaluation was determined by the plants with a minimum of 1 cavity per treatment replicate. Data were analyzed by ANOVA for RCB with mean separation using DMRT.

MAUSAM ◽  
2022 ◽  
Vol 73 (1) ◽  
pp. 161-172
Author(s):  
ANANTA VASHISTH ◽  
DEBASISH ROY ◽  
AVINASH GOYAL ◽  
P. KRISHNAN

Field experiments were conducted on the research farm of IARI, New Delhi during Rabi 2016-17 and 2017-18. Three varieties of wheat (PBW-723, HD-2967 and HD-3086) were sown on three different dates for generating different weather condition during various phenological stages of crop. Results showed that during early crop growth stages soil moisture had higher value and soil temperature had lower value and with progress of crop growth stage, the moisture in the upper layer decreased and soil temperature increased significantly as compared to the bottom layers. During tillering and jointing stage, air temperature within canopy was more and relative humidity was less while during flowering and grain filling stage, air temperature within canopy was less and relative humidity was more in timely sown crop as compared to late and very late sown crop. Radiation use efficiency and relative leaf water content had significantly higher value while leaf water potential had lower value in timely sown crop followed by late and very late sown crop. Yield had higher value in HD-3086 followed by HD-2967 and PBW-723 in all weather conditions. Canopy air temperature difference had positive value in very late sown crop particularly during flowering and grain-filling stages. This reflects in the yield. Yield was more in timely sown crop as compared to late and very late sown crop.  


Author(s):  
S. A. Sawant ◽  
M. Chakraborty ◽  
S. Suradhaniwar ◽  
J. Adinarayana ◽  
S. S. Durbha

Satellite based earth observation (EO) platforms have proved capability to spatio-temporally monitor changes on the earth's surface. Long term satellite missions have provided huge repository of optical remote sensing datasets, and United States Geological Survey (USGS) Landsat program is one of the oldest sources of optical EO datasets. This historical and near real time EO archive is a rich source of information to understand the seasonal changes in the horticultural crops. Citrus (Mandarin / Nagpur Orange) is one of the major horticultural crops cultivated in central India. Erratic behaviour of rainfall and dependency on groundwater for irrigation has wide impact on the citrus crop yield. Also, wide variations are reported in temperature and relative humidity causing early fruit onset and increase in crop water requirement. Therefore, there is need to study the crop growth stages and crop evapotranspiration at spatio-temporal scale for managing the scarce resources. In this study, an attempt has been made to understand the citrus crop growth stages using Normalized Difference Time Series (NDVI) time series data obtained from Landsat archives (<a href="http://earthexplorer.usgs.gov/"target="_blank">http://earthexplorer.usgs.gov/</a>). Total 388 Landsat 4, 5, 7 and 8 scenes (from year 1990 to Aug. 2015) for Worldwide Reference System (WRS) 2, path 145 and row 45 were selected to understand seasonal variations in citrus crop growth. Considering Landsat 30 meter spatial resolution to obtain homogeneous pixels with crop cover orchards larger than 2 hectare area was selected. To consider change in wavelength bandwidth (radiometric resolution) with Landsat sensors (i.e. 4, 5, 7 and 8) NDVI has been selected to obtain continuous sensor independent time series. The obtained crop growth stage information has been used to estimate citrus basal crop coefficient information (Kcb). Satellite based Kcb estimates were used with proximal agrometeorological sensing system observed relevant weather parameters for crop ET estimation. The results show that time series EO based crop growth stage estimates provide better information about geographically separated citrus orchards. Attempts are being made to estimate regional variations in citrus crop water requirement for effective irrigation planning. In future high resolution Sentinel 2 observations from European Space Agency (ESA) will be used to fill the time gaps and to get better understanding about citrus crop canopy parameters.


2021 ◽  
Author(s):  
Samantha Ward ◽  
Paul A. Umina ◽  
Hazel Parry ◽  
Amber Balfour-Cunningham ◽  
Xuan Cheng ◽  
...  

AbstractBACKGROUNDEstimating parasitoid abundance in the field can be difficult, even more so when attempting to quantify parasitism rates and the ecosystem service of biological control that parasitoids can provide. To understand how ‘observed’ parasitism rates (in-field mummy counts) of the green peach aphid, Myzus persicae (Sulzer) (Homoptera: Aphididae) translate to ‘actual’ parasitism rates (laboratory-reared parasitoid counts), field work was undertaken in Australian canola fields over a growing season. Parasitoids were reared within a controlled laboratory setting.RESULTSTotal observed and actual parasitism rates of M. persicae varied considerably across regions, but less so on a field level. Overall, actual parasitism was on average 2.4 times higher than that observed in the field, with rates an average of 4-fold higher in South Australia. As crop growth stage progressed, the percentage of mummies observed increased. Percentage of parasitoids reared also increased with crop growth stage, averaging 3.4% during flowering and reaching 14.4% during podding/senescing. Although there was a greater diversity of reared parasitoid species at later crop growth stages, actual parasitism rate was unaffected by parasitoid species. Diaeretiella rapae was the most commonly reared parasitoid, increasing in abundance with crop growth stage.CONCLUSIONThese findings indicate that mummy counts alone do not provide a clear representation of parasitism within fields.


Weed Science ◽  
1979 ◽  
Vol 27 (6) ◽  
pp. 675-679 ◽  
Author(s):  
C. G. McWhorter

Metriflufen {2-[4-(4-trifluoromethylphenoxy)phenoxy] propanoic acid} was applied as the methyl ester at 0.28 and 0.56 kg/ha over-the-top to johnsongrass [Sorghum halepense(L.) Pers.] growing from rhizomes and to soybeans [Glycine max(L.) Merr. ‘Lee 68′]. After herbicide treatment, plants were grown in the growth chamber for 14 days at 16, 24, or 32 C with relative humidity (RH) at 40 or 100% at each air temperature. Johnsongrass was not controlled at 16 C regardless of metriflufen rate, RH, or the addition of nonoxynol [α-(p-nonylphenyl)-ω-hydroxypoly (oxyethylene)] (with 9.5 moles of polyoxyethylene) surfactant at 0.25 (g/100 ml) to spray solutions. Johnsongrass control at 24 C varied from 5 to 98%, with significantly better control at 100% than at 40% RH. The presence of surfactant increased johnsongrass control at 24 C and 40% RH but not at 24 C and 100% RH. Johnsongrass control at 32 C varied from 48 to 98%, and it was not increased by the presence of the surfactant, regardless of metriflufen rate or RH level. At 16 C metriflufen was more injurious to soybeans than to johnsongrass, but at 24 and 32 C johnsongrass control was significantly greater than soybean injury. The presence of surfactant in spray solutions generally did not increase soybean injury, regardless of temperature or RH level. These results suggest that metriflufen is most selective in controlling johnsongrass in soybeans at 24 C, especially under high RH.


1997 ◽  
Vol 87 (12) ◽  
pp. 1226-1232 ◽  
Author(s):  
D. Shtienberg

The effects of Rhizopus head rot, caused by Rhizopus oryzae, on the yield of confectionery sunflower and its quality were studied in field experiments conducted from 1994 to 1996. The extent of yield loss was related to the crop growth stage at inoculation. When heads were inoculated at the budding stage, loss was not apparent, because inoculated heads were not infected. When inoculated at the anthesis stage, loss was relatively high (42.5 to 99.1%), and both the number of achenes per head and the individual achene weight were reduced. When heads were inoculated at the seed development stage, yield was not reduced significantly (although the entire receptacle was rotted). Effects of Rhizopus head rot on measures of yield quality were examined as well. Inoculation with R. oryzae did not affect the size of the achenes at any crop growth stage. In contrast, the incidence of discolored achenes (an external sign of nutmeats with a bitter off-flavor) was affected by the disease at all crop growth stages. A survey in eight commercial fields from 1992 to 1996 found that, by the end of the season, incidence of disease ranged from 2.3 to 17.4%. However, since disease intensified late, resultant yield losses were minor and did not exceed 3.1%. Loss figures were estimated by means of a model that was developed and validated in the field experiments. The disease did affect the incidence of discolored achenes. Thus, the conclusion drawn is that the effects of Rhizopus head rot in confectionery sunflower on crop yield is of minimal concern, at least when disease intensifies late, as was the case in the studied fields, but management of the disease should be considered in some situations. The objectives would be to prevent a reduction in yield quality, not yield quantity.


1992 ◽  
Vol 40 (5) ◽  
pp. 477 ◽  
Author(s):  
W Danthanarayana ◽  
H Gu

Flight responses of the light brown apple moth, Epiphyas postvittana (Walker), to changes in air temperature, atmospheric humidity, feeding and mating activities were studied under controlled conditions. Flights occurred within the air temperature range from 10 to 30-degrees-C, with the longest flight duration at 20-degrees-C for both sexes. A change of atmospheric humidity significantly influenced flight duration of females, but not of males, at 20-degrees-C. The longest flight duration of the female moths occurred at a relative humidity of 60%. Provision of honey solution or water improved flight duration of the moths aged three days or older. Mating increased flight duration of females from the age of three days onwards, presumably as a result of reduced body weight associated with oviposition.


2012 ◽  
Vol 26 (1) ◽  
pp. 14-18 ◽  
Author(s):  
M. Joy M. Abit ◽  
Kassim Al-Khatib ◽  
Phillip W. Stahlman ◽  
Patrick W. Geier

Conventional grain sorghum is highly susceptible to POST grass control herbicides. Development of aryloxyphenoxypropionate-resistant grain sorghum could provide additional opportunities for POST herbicide grass control in grain sorghum. Field experiments were conducted at Hays and Manhattan, KS, to determine the effect of quizalofop rate and crop growth stage on injury and yield of aryloxyphenoxypropionate-resistant grain sorghum. Quizalofop was applied at 62, 124, 186, and 248 g ai ha−1at sorghum heights of 8 to 10, 15 to 25, and 30 to 38 cm, which corresponded to early POST (EPOST), mid-POST (MPOST), and late POST (LPOST) application timings, respectively. Grain sorghum injury ranged from 0 to 68% at 1 wk after treatment (WAT); by 4 WAT, plants generally recovered from injury. The EPOST and MPOST applications caused 9 to 68% and 2 to 48% injury, respectively, whereas injury from LPOST was 0 to 16%, depending on rate. Crop injury from quizalofop was more prominent at rates higher than the proposed use rate in grain sorghum of 62 g ha−1. Grain yields were similar in treated and nontreated plots; applications of quizalofop at different timings did not reduce yield except when applied MPOST at the Manhattan site.


Sign in / Sign up

Export Citation Format

Share Document