Three main short-chain fatty acids inhibit the activation of THP-1 cells by Mycoplasma pneumoniae

Author(s):  
Xia Wen ◽  
Dai Xiaoyue ◽  
Ding Longkun ◽  
Xi Yue ◽  
Yan Man ◽  
...  

ABSTRACT The overactivation of macrophages causes chronic inflammatory diseases. Short-chain fatty acids (SCFAs), potential drugs for clinical treatment, are modulators of macrophage inflammatory reaction. Therefore, the modulation of macrophage-mediated cell activity is expected to become a new therapeutic strategy for inflammatory diseases caused by Mycoplasma pneumoniae. In this study, 2 kinds of SCFAs (propionate and butyrate) were found to have anti-inflammatory effects in M. pneumoniae-stimulated THP-1 cells inflammatory. They inhibited the expressions of IL-4, IL-6, ROS, and NLRP3 inflammasome, while enhancing the expressions of IL-10 and IFN-γ. Our study revealed these 2 agents to repress transcriptional activities of NF-κB, which are important modulators of inflammation. Meanwhile, SCFAs can significantly enhance the autophagy induced by M. pneumoniae. Considering that SCFAs have few side effects, they might be the promising adjuvant therapy for the prevention and/or treatment of various inflammatory diseases.

2021 ◽  
Vol 22 (9) ◽  
pp. 4377
Author(s):  
Eva Maria Sturm ◽  
Eva Knuplez ◽  
Gunther Marsche

Eosinophils are key components of our host defense and potent effectors in allergic and inflammatory diseases. Once recruited to the inflammatory site, eosinophils release their cytotoxic granule proteins as well as cytokines and lipid mediators, contributing to parasite clearance but also to exacerbation of inflammation and tissue damage. However, eosinophils have recently been shown to play an important homeostatic role in different tissues under steady state. Despite the tremendous progress in the treatment of eosinophilic disorders with the implementation of biologics, there is an unmet need for novel therapies that specifically target the cytotoxic effector functions of eosinophils without completely depleting this multifunctional immune cell type. Recent studies have uncovered several endogenous molecules that decrease eosinophil migration and activation. These include short chain fatty acids (SCFAs) such as butyrate, which are produced in large quantities in the gastrointestinal tract by commensal bacteria and enter the systemic circulation. In addition, high-density lipoprotein-associated anti-inflammatory apolipoproteins have recently been shown to attenuate eosinophil migration and activation. Here, we focus on the anti-pathogenic properties of SCFAs and apolipoproteins on eosinophil effector function and provide insights into the potential use of SCFAs and apolipoproteins (and their mimetics) as effective agents to combat eosinophilic inflammation.


2015 ◽  
Vol 309 (7) ◽  
pp. G590-G601 ◽  
Author(s):  
Emily A. Sawin ◽  
Travis J. De Wolfe ◽  
Busra Aktas ◽  
Bridget M. Stroup ◽  
Sangita G. Murali ◽  
...  

Glycomacropeptide (GMP) is a 64-amino acid (AA) glycophosphopeptide with application to the nutritional management of phenylketonuria (PKU), obesity, and inflammatory bowel disease (IBD). GMP is a putative prebiotic based on extensive glycosylation with sialic acid, galactose, and galactosamine. Our objective was to determine the prebiotic properties of GMP by characterizing cecal and fecal microbiota populations, short-chain fatty acids (SCFA), and immune responses. Weanling PKU ( Pah enu2) and wild-type (WT) C57Bl/6 mice were fed isoenergetic AA, GMP, or casein diets for 8 wk. The cecal content and feces were collected for microbial DNA extraction to perform 16S microbiota analysis by Ion Torrent PGM sequencing. SCFA were determined by gas chromatography, plasma cytokines via a Bio-Plex Pro assay, and splenocyte T cell populations by flow cytometry. Changes in cecal and fecal microbiota are primarily diet dependent. The GMP diet resulted in a reduction from 30–35 to 7% in Proteobacteria, genera Desulfovibrio, in both WT and PKU mice with genotype-dependent changes in Bacteroidetes or Firmicutes. Cecal concentrations of the SCFA acetate, propionate, and butyrate were increased with GMP. The percentage of stimulated spleen cells producing interferon-γ (IFN-γ) was significantly reduced in mice fed GMP compared with casein. In summary, plasma concentrations of IFN-γ, TNF-α, IL-1β, and IL-2 were reduced in mice fed GMP. GMP is a prebiotic based on reduction in Desulfovibrio, increased SCFA, and lower indexes of inflammation compared with casein and AA diets in mice. Functional foods made with GMP may be beneficial in the management of PKU, obesity, and IBD.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Jing Zhang ◽  
Kun Zuo ◽  
Chen Fang ◽  
Xiandong Yin ◽  
Xiaoqing Liu ◽  
...  

Abstract Background The gut microbiota provides health benefits in humans by producing short-chain fatty acids (SCFAs), whose deficiency causes multiple disorders and inflammatory diseases. However, gut bacteria producing SCFAs in patients with atrial fibrillation (AF), an arrhythmia with increasing prevalence, have not been reported. To investigate major gut microbial organisms related to SCFA synthesis, SCFAs-associated KEGG orthologues (KOs), enzymatic genes, and potential producers were examined according to metagenomic data-mining in a northern Chinese cohort comprising 50 non-AF control and 50 AF patients. Results Compared with non-AF controls, individuals with AF had marked differences in microbial genes involved in SCFA-related synthesis, including 125 KOs and 5 SCFAs-related enzymatic genes. Furthermore, there were 10 species that harbored SCFA-synthesis related enzymatic genes, and were markedly decreased in the gut of AF patients. Notably, discriminative features about SCFA-synthesis related function, including 8 KOs (K01752, K01738, K00175, K03737, K01006, K01653, K01647 and K15023), 4 genes (menI, tesB, yciA and CO dehydrogenase acetyl-CoA synthase complex) and 2 species (Coprococcus catus and Firmicutes bacterium CAG:103), were selected as key factors based on LASSO analysis. Furthermore, PLS-SEM analysis showed that 72.8 and 91.14 % of the overall effects on gut microbiota diversity and key species on AF, respectively, were mediated by the key KOs. Meanwhile, 46.31 % of the total effects of SCFA-synthesis related function on left atrial enlargement was mediated by hsCRP. Upon incorporation of clinical properties in AF, the KO score was still significantly associated with AF incidence (OR = 0.004, P = 0.001). Conclusions The current study revealed that dysbiotic gut microbiota in AF is coupled with disrupted SCFA-synthesis related genes, characterized by decreased abundances of KEGG orthologues, synthesis enzymatic genes and harboring species.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Thomas Schwarz ◽  
Agatha Schwarz

Abstract For the maintenance of homeostasis termination of immune reactions is as equally important as their induction. In this scenario regulatory T cells (Treg) play an important role. Accordingly a variety of inflammatory diseases are caused by an impairment of Treg. Hence, it is important to identify triggers by which Treg can be induced and activated, respectively. For quite a long time it is known that ultraviolet radiation can induce Treg which inhibit cutaneous immune reactions including contact hypersensitivity. Since these Treg inhibit in an antigen-specific fashion they may harbor therapeutic potential. However similar Treg can be induced also by other triggers which include vitamin D and antimicrobial peptides. Recently it was discovered that the gut microbiome controls the development of Treg in the intestine. The same may apply for the skin. Short chain fatty acids, microbiota-derived bacterial fermentation products, appear to induce and to activate Treg in the skin. Topical application of short chain fatty acids was shown to inhibit contact hypersensitivity and to reduce inflammation in the murine imiquimod-induced psoriasis-like skin inflammation model. Together, these data indicate that induction and activation of Treg may be a potential therapeutic strategy to treat inflammatory diseases in the future.


1994 ◽  
Vol 92 (4) ◽  
pp. 629-635 ◽  
Author(s):  
Mercedes Gallardo ◽  
Paloma Munoz De Rueda ◽  
Angel Jesus Matilla ◽  
Isabel Maria Sanchez-Calle

Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 92-OR ◽  
Author(s):  
WEI HUANG ◽  
YONG XU ◽  
YOUHUA XU ◽  
LUPING ZHOU ◽  
CHENLIN GAO

Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 1898-P
Author(s):  
ADELINA I.L. LANE ◽  
SAVANNA N. WENINGER ◽  
FRANK DUCA

Sign in / Sign up

Export Citation Format

Share Document