scholarly journals Order and disorder: abnormal 3D chromatin organization in human disease

2020 ◽  
Vol 19 (2) ◽  
pp. 128-138 ◽  
Author(s):  
Chiara Anania ◽  
Darío G Lupiáñez

Abstract A precise three-dimensional (3D) organization of chromatin is central to achieve the intricate transcriptional patterns that are required to form complex organisms. Growing evidence supports an important role of 3D chromatin architecture in development and delineates its alterations as prominent causes of disease. In this review, we discuss emerging concepts on the fundamental forces shaping genomes in space and on how their disruption can lead to pathogenic phenotypes. We describe the molecular mechanisms underlying a wide range of diseases, from the systemic effects of coding mutations on 3D architectural factors, to the more tissue-specific phenotypes resulting from genetic and epigenetic modifications at specific loci. Understanding the connection between the 3D organization of the genome and its underlying biological function will allow a better interpretation of human pathogenesis.

2018 ◽  
Vol 19 (7) ◽  
pp. 2108 ◽  
Author(s):  
Elisabetta Rubini ◽  
Fabio Altieri ◽  
Silvia Chichiarelli ◽  
Flavia Giamogante ◽  
Stefania Carissimi ◽  
...  

Background: Organochlorine pesticides (OCPs) are widely distributed in the environment and their toxicity is mostly associated with the molecular mechanisms of endocrine disruption. Among OCPs, particular attention was focused on the effects of β-hexaclorocyclohexane (β-HCH), a widely common pollutant. A detailed epidemiological study carried out on exposed population in the “Valle del Sacco” found correlations between the incidence of a wide range of diseases and the occurrence of β-HCH contamination. Taking into account the pleiotropic role of the protein signal transducer and activator of transcription 3 (STAT3), its function as a hub protein in cellular signaling pathways triggered by β-HCH was investigated in different cell lines corresponding to tissues that are especially vulnerable to damage by environmental pollutants. Materials and Methods: Human prostate cancer (LNCaP), human breast cancer (MCF-7 and MDA-MB 468), and human hepatoma (HepG2) cell lines were treated with 10 μM β-HCH in the presence or absence of specific inhibitors for different receptors. All samples were subjected to analysis by immunoblotting and RT-qPCR. Results and Conclusions: The preliminary results allow us to hypothesize the involvement of STAT3, through both its canonical and non-canonical pathways, in response to β-HCH. Moreover, we ascertained the role of STAT3 as a master regulator of energy metabolism via the altered expression and localization of HIF-1α and PKM2, respectively, resulting in a Warburg-like effect.


2007 ◽  
Vol 64 (10) ◽  
pp. 3542-3561 ◽  
Author(s):  
Oliver Fuhrer ◽  
Christoph Schär

Abstract Shallow orographic convection embedded in an unstable cap cloud can organize into convective bands. Previous research has highlighted the important role of small-amplitude topographic variations in triggering and organizing banded convection. Here, the underlying dynamical mechanisms are systematically investigated by conducting three-dimensional simulations of moist flows past a two-dimensional mountain ridge using a cloud-resolving numerical model. Most simulations address a sheared environment to account for the observed wind profiles. Results confirm that small-amplitude topographic variations can enhance the development of embedded convection and anchor quasi-stationary convective bands to a fixed location in space. The resulting precipitation patterns exhibit tremendous spatial variability, since regions receiving heavy rainfall can be only kilometers away from regions receiving little or no rain. In addition, the presence of banded convection has important repercussions on the area-mean precipitation amounts. For the experimental setup here, the gravity wave response to small-amplitude topographic variations close to the upstream edge of the cap cloud (which is forced by the larger-scale topography) is found to be the dominant triggering mechanism. Small-scale variations in the underlying topography are found to force the location and spacing of convective bands over a wide range of scales. Further, a self-sufficient mode of unsteady banded convection is investigated that does not dependent on external perturbations and is able to propagate against the mean flow. Finally, the sensitivity of model simulations of banded convection with respect to horizontal computational resolution is investigated. Consistent with predictions from a linear stability analysis, convective bands of increasingly smaller scales are favored as the horizontal resolution is increased. However, small-amplitude topographic roughness is found to trigger banded convection and to control the spacing and location of the resulting bands. Thereby, the robustness of numerical simulations with respect to an increase in horizontal resolution is increased in the presence of topographic variations.


2011 ◽  
Vol 439 (3) ◽  
pp. 349-378 ◽  
Author(s):  
Anthony J. Morgan ◽  
Frances M. Platt ◽  
Emyr Lloyd-Evans ◽  
Antony Galione

Endosomes, lysosomes and lysosome-related organelles are emerging as important Ca2+ storage cellular compartments with a central role in intracellular Ca2+ signalling. Endocytosis at the plasma membrane forms endosomal vesicles which mature to late endosomes and culminate in lysosomal biogenesis. During this process, acquisition of different ion channels and transporters progressively changes the endolysosomal luminal ionic environment (e.g. pH and Ca2+) to regulate enzyme activities, membrane fusion/fission and organellar ion fluxes, and defects in these can result in disease. In the present review we focus on the physiology of the inter-related transport mechanisms of Ca2+ and H+ across endolysosomal membranes. In particular, we discuss the role of the Ca2+-mobilizing messenger NAADP (nicotinic acid adenine dinucleotide phosphate) as a major regulator of Ca2+ release from endolysosomes, and the recent discovery of an endolysosomal channel family, the TPCs (two-pore channels), as its principal intracellular targets. Recent molecular studies of endolysosomal Ca2+ physiology and its regulation by NAADP-gated TPCs are providing exciting new insights into the mechanisms of Ca2+-signal initiation that control a wide range of cellular processes and play a role in disease. These developments underscore a new central role for the endolysosomal system in cellular Ca2+ regulation and signalling.


Glycobiology ◽  
2020 ◽  
Author(s):  
Kaitlyn A Dorsett ◽  
Michael P Marciel ◽  
Jihye Hwang ◽  
Katherine E Ankenbauer ◽  
Nikita Bhalerao ◽  
...  

Abstract The ST6GAL1 sialyltransferase, which adds α2–6 linked sialic acids to N-glycosylated proteins, is overexpressed in a wide range of human malignancies. Recent studies have established the importance of ST6GAL1 in promoting tumor cell behaviors such as invasion, resistance to cell stress, and chemoresistance. Furthermore, ST6GAL1 activity has been implicated in imparting cancer stem cell characteristics. However, despite the burgeoning interest in the role of ST6GAL1 in the phenotypic features of tumor cells, insufficient attention has been paid to the molecular mechanisms responsible for ST6GAL1 upregulation during neoplastic transformation. Evidence suggests that these mechanisms are multifactorial, encompassing genetic, epigenetic, transcriptional, and post-translational regulation. The purpose of this review is to summarize current knowledge regarding the molecular events that drive enriched ST6GAL1 expression in cancer cells.


2019 ◽  
Vol 19 (2) ◽  
pp. 71-82 ◽  
Author(s):  
Anne van Schoonhoven ◽  
Danny Huylebroeck ◽  
Rudi W Hendriks ◽  
Ralph Stadhouders

Abstract Chromosomes have a complex three-dimensional (3D) architecture comprising A/B compartments, topologically associating domains and promoter–enhancer interactions. At all these levels, the 3D genome has functional consequences for gene transcription and therefore for cellular identity. The development and activation of lymphocytes involves strict control of gene expression by transcription factors (TFs) operating in a three-dimensionally organized chromatin landscape. As lymphocytes are indispensable for tissue homeostasis and pathogen defense, and aberrant lymphocyte activity is involved in a wide range of human morbidities, acquiring an in-depth understanding of the molecular mechanisms that control lymphocyte identity is highly relevant. Here we review current knowledge of the interplay between 3D genome organization and transcriptional control during B and T lymphocyte development and antigen-dependent activation, placing special emphasis on the role of TFs.


2020 ◽  
Vol 21 (18) ◽  
pp. 6686
Author(s):  
Yu Ah Hong ◽  
Ji Eun Kim ◽  
Minjee Jo ◽  
Gang-Jee Ko

Sirtuins (SIRTs) are class III histone deacetylases (HDACs) that play important roles in aging and a wide range of cellular functions. Sirtuins are crucial to numerous biological processes, including proliferation, DNA repair, mitochondrial energy homeostasis, and antioxidant activity. Mammals have seven different sirtuins, SIRT1–7, and the diverse biological functions of each sirtuin are due to differences in subcellular localization, expression profiles, and cellular substrates. In this review, we summarize research advances into the role of sirtuins in the pathogenesis of various kidney diseases including acute kidney injury, diabetic kidney disease, renal fibrosis, and kidney aging along with the possible underlying molecular mechanisms. The available evidence indicates that sirtuins have great potential as novel therapeutic targets for the prevention and treatment of kidney diseases.


2019 ◽  
Vol 99 (8) ◽  
pp. 1735-1751 ◽  
Author(s):  
M. Bertolino ◽  
S. Ricci ◽  
S. Canese ◽  
A. Cau ◽  
G. Bavestrello ◽  
...  

AbstractThe three-dimensional coral scaffolds formed by the skeletons of the cold-water corals Madrepora oculata and Lophelia pertusa represent an important deep-sea hard substratum and create an optimal shelter for a rich associated fauna in which the contribution of Porifera has still not been fully considered. The taxonomic analysis of sponges collected from two Sardinian canyons (Nora and Coda Cavallo, 256–408 m) and associated with the dead coral matrix resulted in 28 species, including new records for the Mediterranean Sea, Italian fauna or Central Tyrrhenian Sea. In addition, for many species this is the first finding associated with the coral framework or the first documentation of the in situ morphology. The taxonomic comparison with sponge assemblages associated with coral frameworks from Santa Maria di Leuca, Strait of Sicily and Bari Canyon, gave the opportunity to evaluate the similarities among geographically separated banks. Overall, the percentage of exclusive species (recorded only in one site), is very high (81%) and only one species is shared by all four sites, suggesting a low connectivity among the sponge communities. The percentage of shared species is higher for the Maltese community, supporting the role of the Sicily Channel as a crossroads between the communities of the eastern and western Mediterranean basins. Here, 55% of the sponges associated to the coral framework are also reported in shallow-water coralligenous assemblages, indicating a high bathymetric connectivity as well as an ecological plasticity allowing these species to occupy a wide range of small, dark refuges.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Hayato Nakagawa ◽  
Shin Maeda

Hepatocellular carcinoma (HCC) is the third most common cause of cancer mortality. Short-term prognosis of patients with HCC has improved recently due to advances in early diagnosis and treatment, but long-term prognosis is still unsatisfactory. Therefore, obtaining a further understanding of the molecular carcinogenic mechanisms and the unique pathogenic biology of HCC is important. The most characteristic process in hepatocarcinogenesis is underlying chronic liver injury, which leads to repeated cycles of hepatocyte death, inflammation, and compensatory proliferation and subsequently provides a mitogenic and mutagenic environment leading to the development of HCC. Recent in vivo studies have shown that the stress-activated mitogen-activated protein kinase (MAPK) cascade converging on c-Jun NH2-terminal kinase (JNK) and p38 plays a central role in these processes, and it has attracted considerable attention as a therapeutic target. However, JNK and p38 have complex functions and a wide range of cellular effects. In addition, crosstalk with each other and the nuclear factor-kappaB pathway further complicate these functions. A full understanding is essential to bring these observations into clinical settings. In this paper, we discuss the latest findings regarding the mechanisms of liver injury and hepatocarcinogenesis focusing on the role of the stress-activated MAPK pathway.


1991 ◽  
Vol 229 ◽  
Author(s):  
S. P. Marsh ◽  
M. E. Glicksman

AbstractTheories of late-stage phase separation are discussed from the perspective of statistical mean-field approaches, whereby the material interfaces are assumed to interact with the appropriate average microstructural environment. For coarsening of two- and three-dimensional phases, recent progress is presented for selecting the most appropriate averages that characterize the microstructural environment surrounding a domain. The effective mean field, as well as the average interaction distance over which transport occurs, may be determined self-consistently by imposing global constraints that reflect the microstructural phase fractions and by using explicit spatial and ensemble averages of the matrix transport fields. Comparison of new theoretical coarsening rates with liquid-phase sintering experiments show good agreement over a wide range of phase fractions. Extension of this approach to grain growth, which involves more complex topological interactions, is also discussed.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3632-3632
Author(s):  
Hengyou Weng ◽  
Huilin Huang ◽  
He Huang ◽  
Okwang Kwon ◽  
Ping Chen ◽  
...  

Abstract 5-hydroxymethylcytosine (5hmC), also called the "sixth DNA base", is involved in the DNA demethylation process which generally leads to gene activation. Formation of 5hmC is catalyzed by the Ten-Eleven-Translocation (TET) family proteins, with TET1 being the founding member. The expression of TET1 protein and the global level of its enzymatic product, 5hmC, is markedly reduced in a wide range of solid tumors, including melanoma, prostate, breast, lung, and liver cancer, suggesting that TET1 functions as a tumor suppressor in these types of cancers. However, a recent study from our group demonstrated that TET1 expression and the associated 5hmC levels are significantly up-regulated in MLL -rearranged leukemia, revealing the oncogenic role of TET1 in this type of acute myeloid leukemia (AML) (Huang H, et al. PNAS 2013; 110(29):11994-9). In support of this, another study from a different group showed that high 5hmC level is an independent predictor of poor overall survival in patients with AML (Kroeze LI, et al. Blood 2014; 124(7):1110-8). However, how TET1, as a critical methylcytosine dioxygenase, plays its oncogenic role in AML, especially in MLL -rearranged leukemia, is still unclear. To address this issue, we performed stable isotope labeling by amino acids in cell culture (SILAC)-based proteomic profiling to systematically explore the functional targets of TET1 in a genome-wide and unbiased way. When TET1 was knocked down in MLL-ENL-estrogen receptor inducible (ERtm) mouse myeloid leukemia cells, 123 proteins were found downregulated whereas 191 were upregulated with a fold-change cutoff of 1.2. The expression changes of a set of these genes were confirmed by quantitative PCR in MLL-ENL-ERtm cells and mice samples with TET1 knock-down or depletion. After taking into account the correlation of TET1 and its candidate targets in several sets of AML patient samples, we focused on IDH1 and PSIP1, which represent the negatively- and positively-regulated targets by TET1, respectively. IDH1 encodes an isocitrate dehydrogenase whose mutations are frequently found in AML, whereas the PSIP1 protein is shown to be required for both MLL-dependent transcription and leukemic transformation. Chromatin immunoprecipitation (CHIP) assays suggest that TET1 directly binds to the CpG islands in the promoters of these two genes. Forced expression of Idh1 in leukemic bone marrow cells collected from mice developed MLL-AF9-driven AML significantly inhibited the colony-forming capacity of these cells, which mimics the effect of TET1 knock-out. We are now further investigating the functions and underlying molecular mechanisms of IDH1 and PSIP1 in AML using both in vitro and in vivo models. Considering the important roles of IDH1 and PSIP1 in AML, our findings will provide new insight into the mechanisms underlying the oncogenic role of TET1 in MLL -rearranged leukemia and may ultimately lead to the development of targeted therapy of AML. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document