idenPC-CAP: Identify protein complexes from weighted RNA-protein heterogeneous interaction networks using co-assemble partner relation

Author(s):  
Zhourun Wu ◽  
Qing Liao ◽  
Shixi Fan ◽  
Bin Liu

Abstract Protein complexes play important roles in most cellular processes. The available genome-wide protein–protein interaction (PPI) data make it possible for computational methods identifying protein complexes from PPI networks. However, PPI datasets usually contain a large ratio of false positive noise. Moreover, different types of biomolecules in a living cell cooperate to form a union interaction network. Because previous computational methods focus only on PPIs ignoring other types of biomolecule interactions, their predicted protein complexes often contain many false positive proteins. In this study, we develop a novel computational method idenPC-CAP to identify protein complexes from the RNA-protein heterogeneous interaction network consisting of RNA–RNA interactions, RNA-protein interactions and PPIs. By considering interactions among proteins and RNAs, the new method reduces the ratio of false positive proteins in predicted protein complexes. The experimental results demonstrate that idenPC-CAP outperforms the other state-of-the-art methods in this field.

2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Sun Sook Chung ◽  
Joseph C F Ng ◽  
Anna Laddach ◽  
N Shaun B Thomas ◽  
Franca Fraternali

Abstract Direct drug targeting of mutated proteins in cancer is not always possible and efficacy can be nullified by compensating protein–protein interactions (PPIs). Here, we establish an in silico pipeline to identify specific PPI sub-networks containing mutated proteins as potential targets, which we apply to mutation data of four different leukaemias. Our method is based on extracting cyclic interactions of a small number of proteins topologically and functionally linked in the Protein–Protein Interaction Network (PPIN), which we call short loop network motifs (SLM). We uncover a new property of PPINs named ‘short loop commonality’ to measure indirect PPIs occurring via common SLM interactions. This detects ‘modules’ of PPI networks enriched with annotated biological functions of proteins containing mutation hotspots, exemplified by FLT3 and other receptor tyrosine kinase proteins. We further identify functional dependency or mutual exclusivity of short loop commonality pairs in large-scale cellular CRISPR–Cas9 knockout screening data. Our pipeline provides a new strategy for identifying new therapeutic targets for drug discovery.


2015 ◽  
Vol 4 (4) ◽  
pp. 35-51 ◽  
Author(s):  
Bandana Barman ◽  
Anirban Mukhopadhyay

Identification of protein interaction network is very important to find the cell signaling pathway for a particular disease. The authors have found the differentially expressed genes between two sample groups of HIV-1. Samples are wild type HIV-1 Vpr and HIV-1 mutant Vpr. They did statistical t-test and found false discovery rate (FDR) to identify the genes increased in expression (up-regulated) or decreased in expression (down-regulated). In the test, the authors have computed q-values of test to identify minimum FDR which occurs. As a result they found 172 differentially expressed genes between their sample wild type HIV-1 Vpr and HIV-1 mutant Vpr, R80A. They found 68 up-regulated genes and 104 down-regulated genes. From the 172 differentially expressed genes the authors found protein-protein interaction network with string-db and then clustered (subnetworks) the PPI networks with cytoscape3.0. Lastly, the authors studied significance of subnetworks with performing gene ontology and also studied the KEGG pathway of those subnetworks.


2019 ◽  
pp. 1846-1859
Author(s):  
Amenah H. H. Abdulateef ◽  
Bara'a A. Attea ◽  
Ahmed N. Rashid

     Due to the significant role in understanding cellular processes, the decomposition of Protein-Protein Interaction (PPI) networks into essential building blocks, or complexes, has received much attention for functional bioinformatics research in recent years. One of the well-known bi-clustering descriptors for identifying communities and complexes in complex networks, such as PPI networks, is modularity function.   The contribution of this paper is to introduce heuristic optimization models that can collaborate with the modularity function to improve its detection ability. The definitions of the formulated heuristics are based on nodes and different levels of their neighbor properties.  The modularity function and the formulated heuristics are then injected into the mechanism of a single objective Evolutionary Algorithm (EA) tailored specifically to tackle the problem, and thus, to identify possible complexes from PPI networks. In the experiments, different overlapping scores are used to evaluate the detection accuracy in both complex and protein levels. According to the evaluation metrics, the results reveal that the introduced heuristics have the ability to harness the accuracy of the existing modularity while identifying protein complexes in the tested PPI networks.


2015 ◽  
Vol 13 (02) ◽  
pp. 1571001 ◽  
Author(s):  
Chern Han Yong ◽  
Limsoon Wong

Protein interactions and complexes behave in a dynamic fashion, but this dynamism is not captured by interaction screening technologies, and not preserved in protein–protein interaction (PPI) networks. The analysis of static interaction data to derive dynamic protein complexes leads to several challenges, of which we identify three. First, many proteins participate in multiple complexes, leading to overlapping complexes embedded within highly-connected regions of the PPI network. This makes it difficult to accurately delimit the boundaries of such complexes. Second, many condition- and location-specific PPIs are not detected, leading to sparsely-connected complexes that cannot be picked out by clustering algorithms. Third, the majority of complexes are small complexes (made up of two or three proteins), which are extra sensitive to the effects of extraneous edges and missing co-complex edges. We show that many existing complex-discovery algorithms have trouble predicting such complexes, and show that our insight into the disparity between the static interactome and dynamic protein complexes can be used to improve the performance of complex discovery.


2019 ◽  
Author(s):  
David Armanious ◽  
Jessica Schuster ◽  
George F. Tollefson ◽  
Anthony Agudelo ◽  
Andrew T. DeWan ◽  
...  

AbstractBackgroundData analysis has become crucial in the post genomic era where the accumulation of genomic information is mounting exponentially. Analyzing protein-protein interactions in the context of the interactome is a powerful approach to understanding disease phenotypes.ResultsWe describe Proteinarium, a multi-sample protein-protein interaction network analysis and visualization tool. Proteinarium can be used to analyze data for samples with dichotomous phenotypes, multiple samples from a single phenotype or a single sample. Then, by similarity clustering, the network-based relations of samples are identified and clusters of related samples are presented as a dendrogram. Each branch of the dendrogram is built based on network similarities of the samples. The protein-protein interaction networks can be analyzed and visualized on any branch of the dendrogram. Proteinarium’s input can be derived from transcriptome analysis, whole exome sequencing data or any high-throughput screening approach. Its strength lies in use of gene lists for each sample as a distinct input which are further analyzed through protein interaction analyses. Proteinarium output includes the gene lists of visualized networks and PPI interaction files where users can analyze the network(s) on other platforms such as Cytoscape. In addition, since the dendrogram is written in Newick tree format, users can visualize it in other software platforms like Dendroscope, ITOL.ConclusionsProteinarium, through the analysis and visualization of PPI networks, allows researchers to make important observations on high throughput data for a variety of research questions. Proteinarium identifies significant clusters of patients based on their shared network similarity for the disease of interest and the associated genes. Proteinarium is a command-line tool written in Java with no external dependencies and it is freely available at https://github.com/Armanious/Proteinarium.


2015 ◽  
Vol 2015 ◽  
pp. 1-9
Author(s):  
Peng Liu ◽  
Lei Yang ◽  
Daming Shi ◽  
Xianglong Tang

A method for predicting protein-protein interactions based on detected protein complexes is proposed to repair deficient interactions derived from high-throughput biological experiments. Protein complexes are pruned and decomposed into small parts based on the adaptivek-cores method to predict protein-protein interactions associated with the complexes. The proposed method is adaptive to protein complexes with different structure, number, and size of nodes in a protein-protein interaction network. Based on different complex sets detected by various algorithms, we can obtain different prediction sets of protein-protein interactions. The reliability of the predicted interaction sets is proved by using estimations with statistical tests and direct confirmation of the biological data. In comparison with the approaches which predict the interactions based on the cliques, the overlap of the predictions is small. Similarly, the overlaps among the predicted sets of interactions derived from various complex sets are also small. Thus, every predicted set of interactions may complement and improve the quality of the original network data. Meanwhile, the predictions from the proposed method replenish protein-protein interactions associated with protein complexes using only the network topology.


2009 ◽  
Vol 07 (01) ◽  
pp. 217-242 ◽  
Author(s):  
LIN GAO ◽  
PENG-GANG SUN ◽  
JIA SONG

Protein–Protein Interaction (PPI) networks are believed to be important sources of information related to biological processes and complex metabolic functions of the cell. When studying the workings of a biological cell, it is useful to be able to detect known and predict still undiscovered protein complexes within the cell's PPI networks. Such predictions may be used as an inexpensive tool to direct biological experiments. The increasing amount of available PPI data necessitate a fast, accurate approach to biological complex identification. Because of its importance in the studies of protein interaction network, there are different models and algorithms in identifying functional modules in PPI networks. In this paper, we review some representative algorithms, focusing on the algorithms underlying the approaches and how the algorithms relate to each other. In particular, a comparison is given based on the property of the algorithms. Since the PPI network is noisy and still incomplete, some methods which consider other additional properties for preprocessing and purifying of PPI data are presented. We also give a discussion about the functional annotation and validation of protein complexes. Finally, new progress and future research directions are discussed from the computational viewpoint.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Qiguo Dai ◽  
Maozu Guo ◽  
Yingjie Guo ◽  
Xiaoyan Liu ◽  
Yang Liu ◽  
...  

Protein complex formed by a group of physical interacting proteins plays a crucial role in cell activities. Great effort has been made to computationally identify protein complexes from protein-protein interaction (PPI) network. However, the accuracy of the prediction is still far from being satisfactory, because the topological structures of protein complexes in the PPI network are too complicated. This paper proposes a novel optimization framework to detect complexes from PPI network, named PLSMC. The method is on the basis of the fact that if two proteins are in a common complex, they are likely to be interacting. PLSMC employs this relation to determine complexes by a penalized least squares method. PLSMC is applied to several public yeast PPI networks, and compared with several state-of-the-art methods. The results indicate that PLSMC outperforms other methods. In particular, complexes predicted by PLSMC can match known complexes with a higher accuracy than other methods. Furthermore, the predicted complexes have high functional homogeneity.


2019 ◽  
Author(s):  
JE Tomkins ◽  
R Ferrari ◽  
N Vavouraki ◽  
J Hardy ◽  
RC Lovering ◽  
...  

AbstractThe past decade has seen the rise of omics data, for the understanding of biological systems in health and disease. This wealth of data includes protein-protein interaction (PPI) derived from both low and high-throughput assays, which is curated into multiple databases that capture the extent of available information from the peer-reviewed literature. Although these curation efforts are extremely useful, reliably downloading and integrating PPI data from the variety of available repositories is challenging and time consuming.We here present a novel user-friendly web-resource called PINOT (Protein Interaction Network Online Tool; available at http://www.reading.ac.uk/bioinf/PINOT/PINOT_form.html) to optimise the collection and processing of PPI data from the IMEx consortium associated repositories (members and observers) and from WormBase for constructing, respectively, human and C. elegans PPI networks.Users submit a query containing a list of proteins of interest for which PINOT will mine PPIs. PPI data is downloaded, merged, quality checked, and confidence scored based on the number of distinct methods and publications in which each interaction has been reported. Examples of PINOT applications are provided to highlight the performance, the ease of use and the potential applications of this tool.PINOT is a tool that allows users to survey the literature, extracting PPI data for a list of proteins of interest. The comparison with analogous tools showed that PINOT was able to extract similar numbers of PPIs while incorporating a set of innovative features. PINOT processes both small and large queries, it downloads PPIs live through PSICQUIC and it applies quality control filters on the downloaded PPI annotations (i.e. removing the need of manual inspection by the user). PINOT provides the user with information on detection methods and publication history for each of the downloaded interaction data entry and provides results in a table format that can be easily further customised and/or directly uploaded in a network visualization software.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Ao Li ◽  
Mengqu Ge ◽  
Yao Zhang ◽  
Chen Peng ◽  
Minghui Wang

Recent study shows that long noncoding RNAs (lncRNAs) are participating in diverse biological processes and complex diseases. However, at present the functions of lncRNAs are still rarely known. In this study, we propose a network-based computational method, which is called lncRNA-protein interaction prediction based on Heterogeneous Network Model (LPIHN), to predict the potential lncRNA-protein interactions. First, we construct a heterogeneous network by integrating the lncRNA-lncRNA similarity network, lncRNA-protein interaction network, and protein-protein interaction (PPI) network. Then, a random walk with restart is implemented on the heterogeneous network to infer novel lncRNA-protein interactions. The leave-one-out cross validation test shows that our approach can achieve an AUC value of 96.0%. Some lncRNA-protein interactions predicted by our method have been confirmed in recent research or database, indicating the efficiency of LPIHN to predict novel lncRNA-protein interactions.


Sign in / Sign up

Export Citation Format

Share Document