A feature-based approach to predict hot spots in protein–DNA binding interfaces

2019 ◽  
Vol 21 (3) ◽  
pp. 1038-1046 ◽  
Author(s):  
Sijia Zhang ◽  
Le Zhao ◽  
Chun-Hou Zheng ◽  
Junfeng Xia

Abstract DNA-binding hot spot residues of proteins are dominant and fundamental interface residues that contribute most of the binding free energy of protein–DNA interfaces. As experimental methods for identifying hot spots are expensive and time consuming, computational approaches are urgently required in predicting hot spots on a large scale. In this work, we systematically assessed a wide variety of 114 features from a combination of the protein sequence, structure, network and solvent accessible information and their combinations along with various feature selection strategies for hot spot prediction. We then trained and compared four commonly used machine learning models, namely, support vector machine (SVM), random forest, Naïve Bayes and k-nearest neighbor, for the identification of hot spots using 10-fold cross-validation and the independent test set. Our results show that (1) features based on the solvent accessible surface area have significant effect on hot spot prediction; (2) different but complementary features generally enhance the prediction performance; and (3) SVM outperforms other machine learning methods on both training and independent test sets. In an effort to improve predictive performance, we developed a feature-based method, namely, PrPDH (Prediction of Protein–DNA binding Hot spots), for the prediction of hot spots in protein–DNA binding interfaces using SVM based on the selected 10 optimal features. Comparative results on benchmark data sets indicate that our predictor is able to achieve generally better performance in predicting hot spots compared to the state-of-the-art predictors. A user-friendly web server for PrPDH is well established and is freely available at http://bioinfo.ahu.edu.cn:8080/PrPDH.

2020 ◽  
Vol 21 (S13) ◽  
Author(s):  
Yuliang Pan ◽  
Shuigeng Zhou ◽  
Jihong Guan

Abstract Background Protein-DNA interaction governs a large number of cellular processes, and it can be altered by a small fraction of interface residues, i.e., the so-called hot spots, which account for most of the interface binding free energy. Accurate prediction of hot spots is critical to understand the principle of protein-DNA interactions. There are already some computational methods that can accurately and efficiently predict a large number of hot residues. However, the insufficiency of experimentally validated hot-spot residues in protein-DNA complexes and the low diversity of the employed features limit the performance of existing methods. Results Here, we report a new computational method for effectively predicting hot spots in protein-DNA binding interfaces. This method, called PreHots (the abbreviation of Predicting Hotspots), adopts an ensemble stacking classifier that integrates different machine learning classifiers to generate a robust model with 19 features selected by a sequential backward feature selection algorithm. To this end, we constructed two new and reliable datasets (one benchmark for model training and one independent dataset for validation), which totally consist of 123 hot spots and 137 non-hot spots from 89 protein-DNA complexes. The data were manually collected from the literature and existing databases with a strict process of redundancy removal. Our method achieves a sensitivity of 0.813 and an AUC score of 0.868 in 10-fold cross-validation on the benchmark dataset, and a sensitivity of 0.818 and an AUC score of 0.820 on the independent test dataset. The results show that our approach outperforms the existing ones. Conclusions PreHots, which is based on stack ensemble of boosting algorithms, can reliably predict hot spots at the protein-DNA binding interface on a large scale. Compared with the existing methods, PreHots can achieve better prediction performance. Both the webserver of PreHots and the datasets are freely available at: http://dmb.tongji.edu.cn/tools/PreHots/.


2021 ◽  
Vol 22 (S3) ◽  
Author(s):  
Sijia Zhang ◽  
Lihua Wang ◽  
Le Zhao ◽  
Menglu Li ◽  
Mengya Liu ◽  
...  

Abstract Background DNA-binding hot spots are dominant and fundamental residues that contribute most of the binding free energy yet accounting for a small portion of protein–DNA interfaces. As experimental methods for identifying hot spots are time-consuming and costly, high-efficiency computational approaches are emerging as alternative pathways to experimental methods. Results Herein, we present a new computational method, termed inpPDH, for hot spot prediction. To improve the prediction performance, we extract hybrid features which incorporate traditional features and new interfacial neighbor properties. To remove redundant and irrelevant features, feature selection is employed using a two-step feature selection strategy. Finally, a subset of 7 optimal features are chosen to construct the predictor using support vector machine. The results on the benchmark dataset show that this proposed method yields significantly better prediction accuracy than those previously published methods in the literature. Moreover, a user-friendly web server for inpPDH is well established and is freely available at http://bioinfo.ahu.edu.cn/inpPDH. Conclusions We have developed an accurate improved prediction model, inpPDH, for hot spot residues in protein–DNA binding interfaces by given the structure of a protein–DNA complex. Moreover, we identify a comprehensive and useful feature subset including the proposed interfacial neighbor features that has an important strength for identifying hot spot residues. Our results indicate that these features are more effective than the conventional features considered previously, and that the combination of interfacial neighbor features and traditional features may support the creation of a discriminative feature set for efficient prediction of hot spot residues in protein–DNA complexes.


2021 ◽  
Vol 16 ◽  
Author(s):  
Yuqing Qian ◽  
Hao Meng ◽  
Weizhong Lu ◽  
Zhijun Liao ◽  
Yijie Ding ◽  
...  

Background: The identification of DNA binding proteins (DBP) is an important research field. Experiment-based methods are time-consuming and labor-intensive for detecting DBP. Objective: To solve the problem of large-scale DBP identification, some machine learning methods are proposed. However, these methods have insufficient predictive accuracy. Our aim is to develop a sequence-based machine learning model to predict DBP. Methods: In our study, we extract six types of features (including NMBAC, GE, MCD, PSSM-AB, PSSM-DWT, and PsePSSM) from protein sequences. We use Multiple Kernel Learning based on Hilbert-Schmidt Independence Criterion (MKL-HSIC) to estimate the optimal kernel. Then, we construct a hypergraph model to describe the relationship between labeled and unlabeled samples. Finally, Laplacian Support Vector Machines (LapSVM) is employed to train the predictive model. Our method is tested on PDB186, PDB1075, PDB2272 and PDB14189 data sets. Result: Compared with other methods, our model achieves best results on benchmark data sets. Conclusion: The accuracy of 87.1% and 74.2% are achieved on PDB186 (Independent test of PDB1075) and PDB2272 (Independent test of PDB14189), respectively.


2020 ◽  
Author(s):  
Xiaolei Zhu ◽  
Ling Liu ◽  
Jingjing He ◽  
Ting Fang ◽  
Yi Xiong ◽  
...  

Abstract Background: The interaction between proteins and nucleic acids plays pivotal roles in various biological processes such as transcription, translation, and gene regulation. Hot spots are a small set of residues that contribute most to the binding affinity of a protein-nucleic acid interaction. Compared to the extensive studies of the hot spots on protein-protein interfaces, the hot spot residues within protein-nucleic acids interfaces remain less well-studied, in part because mutagenesis data for protein-nucleic acids interaction are not as abundant as that for protein-protein interactions. Results: In this study, we built a new computational model, iPNHOT, to effectively predict hot spot residues on protein-nucleic acids interfaces. One training data set and an independent test set were collected from dbAMEPNI and some recent literature, respectively. To build our model, we generated 97 different sequential and structural features and used a two-step strategy to select the relevant features. The final model was built based only on 7 features using a support vector machine (SVM). The features include two unique features such as ∆SASsa1/2 and esp3, which are newly proposed in this study. Based on the cross validation results, our model gave F1 score and AUROC as 0.725 and 0.807 on the subset collected from ProNIT, respectively, compared to 0.407 and 0.670 of mCSM-NA, a state-of-the art model to predict the thermodynamic effects of protein-nucleic acid interaction. The iPNHOT model was further tested on the independent test set, which showed that our model outperformed other methods.Conclusion: In this study, by collecting data from a recently published database dbAMEPNI, we proposed a new model, iPNHOT, to predict hotspots on both protein-DNA and protein-RNA interfaces. The results show that our model outperforms the existing state-of-art models. Our model is available for users through a webserver: http://zhulab.ahu.edu.cn/iPNHOT/.


2019 ◽  
Author(s):  
Xiaolei Zhu ◽  
Ling Liu ◽  
Jingjing He ◽  
Ting Fang ◽  
Yi Xiong ◽  
...  

Abstract Background The interaction between proteins and nucleic acids plays pivotal roles in various biological processes such as transcription, translation, and gene regulation. Hot spots are a small set of residues that contribute most to the binding affinity of a protein-nucleic acid interaction. Compared to the extensive studies of the hot spots on protein-protein interfaces, the hot spot residues within protein-nucleic acids interfaces remain less well-studied, in part because mutagenesis data for protein-nucleic acids interaction are not as abundant as that for protein-protein interactions.Results In this study, we built a new computational model, iPNHOT, to effectively predict hot spot residues on protein-nucleic acids interfaces. One training data set and an independent test set were collected from dbAMEPNI and some recent literature, respectively. To build our model, we generated 97 different sequential and structural features and used a two-step strategy to select the relevant features. The final model was built based only on 7 features using a support vector machine (SVM). The features include two unique features such as ∆SASsa 1/2 and esp3, which are newly proposed in this study. Based on the cross validation results, our model gave F1 score and AUC as 0.725 and 0.807 on the subset collected from ProNIT, respectively, compared to 0.407 and 0.670 of mCSM-NA, a state-of-the art model to predict the thermodynamic effects of protein-nucleic acid interaction. The iPNHOT model was further tested on the independent test set, which showed that our model outperformed other methods.Conclusion In this study, by collecting data from a recently published database dbAMEPNI, we proposed a new model, iPNHOT, to predict hotspots on both protein-DNA and protein-RNA interfaces. The result shows that our model outperformed the existing state-of-art models. Our model is available for users through a webserver: http://zhulab.ahu.edu.cn/iPNHOT/ .


2019 ◽  
Author(s):  
Xiaolei Zhu ◽  
Ling Liu ◽  
Jingjing He ◽  
Ting Fang ◽  
Yi Xiong ◽  
...  

Abstract Background The interaction between proteins and nucleic acids plays pivotal roles in various biological processes such as transcription, translation, and gene regulation. Hot spots are a small set of residues that contribute most to the binding affinity of a protein-nucleic acid interaction. Compared to the extensive studies of the hot spots on protein-protein interfaces, the hot spot residues within protein-nucleic acids interfaces remains less well-studied, in part because mutagenesis data for protein-nucleic acids interaction are not as abundant as that for protein-protein interactions. Results In this study, we built a new computational model, iPNHOT, to effectively predict hot spot residues on protein-nucleic acids interfaces. One training data set and an independent test set were collected from dbAMEPNI and some recent literature, respectively. To build our model, we generated 97 different sequential and structural features and used a two-step strategy to select the relevant features. The final model was built based only on 9 features using a support vector machine (SVM). The features include three unique features such as ∆SASsa1/2, ∆SASna1/2, and esp3, which are newly proposed in this study. Based on the cross validation results, our model gave F1 score and AUC as 0.720 and 0.807 on the subset collected from ProNIT, respectively, compared to 0.407 and 0.670 of mCSM-NA, a state-of-the art model to predict the thermodynamic effects of protein-nucleic acid interaction. The iPNHOT model was further tested on the independent test set, which showed that our model outperformed other methods. Conclusion In this study, by collecting data from a recently published database dbAMEPNI, we proposed a new model, iPNHOT, to predict hotspots on protein-nucleic acid interfaces. The result shows that our model outperformed the existing state-of-art models. Our model is available for users through a webserver: http://zhulab.ahu.edu.cn/iPNHOT/.


2019 ◽  
Author(s):  
Xiaolei Zhu ◽  
Ling Liu ◽  
Jingjing He ◽  
Ting Fang ◽  
Yi Xiong ◽  
...  

Abstract Background The interaction between proteins and nucleic acids plays pivotal roles in various biological processes such as transcription, translation, and gene regulation. Hot spots are a small set of residues that contribute most to the binding affinity of a protein-nucleic acid interaction. Compared to the extensive studies of the hot spots on protein-protein interfaces, the hot spot residues within protein-nucleic acids interfaces remain less well-studied, in part because mutagenesis data for protein-nucleic acids interaction are not as abundant as that for protein-protein interactions.Results In this study, we built a new computational model, iPNHOT, to effectively predict hot spot residues on protein-nucleic acids interfaces. One training data set and an independent test set were collected from dbAMEPNI and some recent literature, respectively. To build our model, we generated 97 different sequential and structural features and used a two-step strategy to select the relevant features. The final model was built based only on 7 features using a support vector machine (SVM). The features include two unique features such as ∆SASsa 1/2 and esp3, which are newly proposed in this study. Based on the cross validation results, our model gave F1 score and AUROC as 0.725 and 0.807 on the subset collected from ProNIT, respectively, compared to 0.407 and 0.670 of mCSM-NA, a state-of-the art model to predict the thermodynamic effects of protein-nucleic acid interaction. The iPNHOT model was further tested on the independent test set, which showed that our model outperformed other methods.Conclusion In this study, by collecting data from a recently published database dbAMEPNI, we proposed a new model, iPNHOT, to predict hotspots on both protein-DNA and protein-RNA interfaces. The results show that our model outperforms the existing state-of-art models. Our model is available for users through a webserver: http://zhulab.ahu.edu.cn/iPNHOT/ .


Molecules ◽  
2018 ◽  
Vol 23 (10) ◽  
pp. 2535 ◽  
Author(s):  
Siyu Liu ◽  
Chuyao Liu ◽  
Lei Deng

Hot spots are the subset of interface residues that account for most of the binding free energy, and they play essential roles in the stability of protein binding. Effectively identifying which specific interface residues of protein–protein complexes form the hot spots is critical for understanding the principles of protein interactions, and it has broad application prospects in protein design and drug development. Experimental methods like alanine scanning mutagenesis are labor-intensive and time-consuming. At present, the experimentally measured hot spots are very limited. Hence, the use of computational approaches to predicting hot spots is becoming increasingly important. Here, we describe the basic concepts and recent advances of machine learning applications in inferring the protein–protein interaction hot spots, and assess the performance of widely used features, machine learning algorithms, and existing state-of-the-art approaches. We also discuss the challenges and future directions in the prediction of hot spots.


2018 ◽  
Vol 8 (1) ◽  
pp. 16 ◽  
Author(s):  
Irina Matijosaitiene ◽  
Peng Zhao ◽  
Sylvain Jaume ◽  
Joseph Gilkey Jr

Predicting the exact urban places where crime is most likely to occur is one of the greatest interests for Police Departments. Therefore, the goal of the research presented in this paper is to identify specific urban areas where a crime could happen in Manhattan, NY for every hour of a day. The outputs from this research are the following: (i) predicted land uses that generates the top three most committed crimes in Manhattan, by using machine learning (random forest and logistic regression), (ii) identifying the exact hours when most of the assaults are committed, together with hot spots during these hours, by applying time series and hot spot analysis, (iii) built hourly prediction models for assaults based on the land use, by deploying logistic regression. Assault, as a physical attack on someone, according to criminal law, is identified as the third most committed crime in Manhattan. Land use (residential, commercial, recreational, mixed use etc.) is assigned to every area or lot in Manhattan, determining the actual use or activities within each particular lot. While plotting assaults on the map for every hour, this investigation has identified that the hot spots where assaults occur were ‘moving’ and not confined to specific lots within Manhattan. This raises a number of questions: Why are hot spots of assaults not static in an urban environment? What makes them ‘move’—is it a particular urban pattern? Is the ‘movement’ of hot spots related to human activities during the day and night? Answering these questions helps to build the initial frame for assault prediction within every hour of a day. Knowing a specific land use vulnerability to assault during each exact hour can assist the police departments to allocate forces during those hours in risky areas. For the analysis, the study is using two datasets: a crime dataset with geographical locations of crime, date and time, and a geographic dataset about land uses with land use codes for every lot, each obtained from open databases. The study joins two datasets based on the spatial location and classifies data into 24 classes, based on the time range when the assault occurred. Machine learning methods reveal the effect of land uses on larceny, harassment and assault, the three most committed crimes in Manhattan. Finally, logistic regression provides hourly prediction models and unveils the type of land use where assaults could occur during each hour for both day and night.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Rulan Wang ◽  
Zhuo Wang ◽  
Hongfei Wang ◽  
Yuxuan Pang ◽  
Tzong-Yi Lee

AbstractLysine crotonylation (Kcr) is a type of protein post-translational modification (PTM), which plays important roles in a variety of cellular regulation and processes. Several methods have been proposed for the identification of crotonylation. However, most of these methods can predict efficiently only on histone or non-histone protein. Therefore, this work aims to give a more balanced performance in different species, here plant (non-histone) and mammalian (histone) are involved. SVM (support vector machine) and RF (random forest) were employed in this study. According to the results of cross-validations, the RF classifier based on EGAAC attribute achieved the best predictive performance which performs competitively good as existed methods, meanwhile more robust when dealing with imbalanced datasets. Moreover, an independent test was carried out, which compared the performance of this study and existed methods based on the same features or the same classifier. The classifiers of SVM and RF could achieve best performances with 92% sensitivity, 88% specificity, 90% accuracy, and an MCC of 0.80 in the mammalian dataset, and 77% sensitivity, 83% specificity, 70% accuracy and 0.54 MCC in a relatively small dataset of mammalian and a large-scaled plant dataset respectively. Moreover, a cross-species independent testing was also carried out in this study, which has proved the species diversity in plant and mammalian.


Sign in / Sign up

Export Citation Format

Share Document