A simple method of hidden-line removal in three-dimensional modelling: hiding the problem behind filled polygons

1990 ◽  
Vol 6 (1) ◽  
pp. 55-56
Author(s):  
M.D. Atkinson ◽  
J.S. Heslop-Harrison
Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4616
Author(s):  
Takashi Ikuno ◽  
Zen Somei

We have developed a simple method of fabricating liquid metal nanowire (NW) arrays of eutectic GaIn (EGaIn). When an EGaIn droplet anchored on a flat substrate is pulled perpendicular to the substrate surface at room temperature, an hourglass shaped EGaIn is formed. At the neck of the shape, based on the Plateau–Rayleigh instability, the EGaIn bridge with periodically varying thicknesses is formed. Finally, the bridge is broken down by additional pulling. Then, EGaIn NW is formed at the surface of the breakpoint. In addition, EGaIn NW arrays are found to be fabricated by pulling multiple EGaIn droplets on a substrate simultaneously. The average diameter of the obtained NW was approximately 0.6 μm and the length of the NW depended on the amount of droplet anchored on the substrate. The EGaIn NWs fabricated in this study may be used for three-dimensional wiring for integrated circuits, the tips of scanning probe microscopes, and field electron emission arrays.


2021 ◽  
Vol 10 (2) ◽  
pp. 184
Author(s):  
Maximilian Kerschbaum ◽  
Siegmund Lang ◽  
Florian Baumann ◽  
Volker Alt ◽  
Michael Worlicek

Insertion of sacro-iliac (SI) screws for stabilization of the posterior pelvic ring without intraoperative navigation or three-dimensional imaging can be challenging. The aim of this study was to develop a simple method to visualize the ideal SI screw corridor, on lateral two-dimensional images, corresponding to the lateral fluoroscopic view, used intraoperatively while screw insertion, to prevent neurovascular injury. We used multiplanar reconstructions of pre- and postoperative computed tomography scans (CT) to determine the position of the SI corridor. Then, we processed the dataset into a lateral two-dimensional slice fusion image (SFI) matching head and tip of the screw. Comparison of the preoperative SFI planning and the screw position in the postoperative SFI showed reproducible results. In conclusion, the slice fusion method is a simple technique for translation of three-dimensional planned SI screw positioning into a two-dimensional strict lateral fluoroscopic-like view.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Yangyang Gu ◽  
Peng Dai ◽  
Wen Zhang ◽  
Zhanwen Su

AbstractIn this work, we demonstrated a simple method for preparing three-dimensional interconnected carbon nanofibers (ICNF) derived from fish bone as an efficient and lightweight microwave absorber. The as-obtained ICNF exhibits excellent microwave absorption performance with a maximum reflection loss of –59.2 dB at the filler content of 15 wt%. In addition, the effective absorption bandwidth can reach 4.96 GHz at the thickness of 2 mm. The outstanding microwave absorption properties can be mainly ascribed to its well-defined interconnected nanofibers architecture and the doping of nitrogen atoms, which are also better than most of the reported carbon-based absorbents. This work paves an attractive way for the design and fabrication of highly efficient and lightweight electromagnetic wave absorbers.


1990 ◽  
Author(s):  
A. Kirschner ◽  
H. Stoff

A cascade design-method is presented which complements the meridional through-flow design procedure of turbomachines. Starting from an axisymmetric flow field and the streamline geometry in the meridional plane this simple method produces a solution for the quasi three-dimensional flow field and the blade-element geometry on corresponding stream surfaces. In addition, it provides intra-blade data on loss and turning required for a consistent design and a convenient means of optimizing blade loading. The purpose of this paper is to describe the theoretical basis of the method and to illustrate its application in the design of transonic compressors.


2021 ◽  
Author(s):  
Ge Cheng ◽  
David Grawe ◽  
K. Heinke Schlünzen

<p>Nudging is a simple method that aims to dynamically adjust the model toward the observations by including an additional feedback term in the model governing equation. This method is widely applied in data assimilation due to its simple implementation and reasonable model results. The basic concept of nudging is similar to that of urban canopy parameterization, in which additional terms are usually added in the conservation equations of momentum and energy aiming to simulate the canopy effects. However, few studies have investigated the implementation of nudging methods in urban canopy parameterizations. In this study we developed a multi-layer urban canopy parameterization (UCP) by using a nudging approach to represent the impacts of vegetated urban canopies on temperatures and winds in mesoscale models.</p><p>The difficulty of developing UCP by using a nudging method lies in defining appropriate values for the nudging coefficients and the forcing fields (e.g. indoor temperature fields for temperature nudging). To determine nudging coefficients, we use three major urban canopy morphological parameters: building height, frontal area density and building density. The ranges of these parameters are taken from the values for the Local Climate Zones datasets, in our case for the city of Hamburg. The UCP is employed in the three -dimensional atmospheric mesoscale model METRAS. Results show that this UCP can well simulate wind-blocking effects induced from obstacles as buildings and trees and urban heat island phenomenon for cities. Thus, nudging is an efficient and effective method that can be used for urban canopy parameterizations. However, as well known for nudging, it is not conserving energy. Therefore, we investigated the energy loss by tracking the reduced kinetic energy and internal energy. The UCP and model results will be presented.</p>


1958 ◽  
Vol 25 (2) ◽  
pp. 210-213
Author(s):  
L. E. Goodman ◽  
A. R. Robinson

Abstract The well-known noncommutativity of three-dimensional finite rotations has long been a curiosity in mechanics since, in actual solution of dynamical problems, the angular velocity, which is conveniently representable as a vector, plays a more natural role. In modern inertial guidance systems, however, the orientation of a body in space, i.e., a rotation, is of primary engineering interest. In this paper a simple method of determining orientation from the time history of three body components of angular velocity is developed by means of a new theorem in kinematics. As a special case of this theorem it is shown that a gyro subjected to a regime of rotations which returns it to the original space orientation will, in general, produce a residual signal. It will have experienced a nonzero and easily calculated mean angular velocity about its input axis. Some implications of the theorem for the design of inertial guidance systems and for the testing of gyros are discussed.


2000 ◽  
Vol 31 (1) ◽  
pp. 57-72 ◽  
Author(s):  
N. R. B. Olsen ◽  
D. K. Lysne

A three-dimensional numerical model was used to model water circulation and spatial variation of temperature in Lake Sperillen in Norway. A winter situation was simulated, with thermal stratification and ice cover. The numerical model solved the Navier-Stokes equations on a 3D unstructured non-orthogonal grid with hexahedral cells. The SIMPLE method was used for the pressure coupling and the k-ε model was used to model turbulence, with a modification for density stratification due to the vertical temperature profile. The results were compared with field measurements of the temperature in the lake, indicating the location of the water current. Reasonably good agreement was found.


2007 ◽  
Vol 31 ◽  
pp. 117-119
Author(s):  
Li Gao ◽  
Qing Feng Yan ◽  
C.C. Wong ◽  
Yet Ming Chiang

Convective self-assembly of colloidal spheres provides a simple method for fabricating two and three dimensional colloidal crystals. In this work, we investigated the layer transitions phenomena during colloidal self-assembly in a sessile drop by using an in-situ videoscopic set-up. The effects of surface charge, colloidal concentration, and surfactant additions were examined. The results show that the chemical environment plays an important role in colloidal self-assembly. In the case of ordered growth, different layer transition phenomena were observed when the colloidal concentration is different.


2012 ◽  
Vol 594-597 ◽  
pp. 2394-2397
Author(s):  
Jian Cui ◽  
Dong Ling Ma ◽  
Fei Cai

With the rapid development of computer technology, communications technology, and other related technologies, the Digital City has become a hot topic of current research. The traditional method of constructing digital city based on ArcGis is very complex, the type of computer software that related is much more, and the interaction between the software is poor. For the traditional method of digital urban design is difficult to design and visualization effect is poor, this paper builds the techniques of campus apartment modeling based on the skyline combined specific examples of campus apartments, realizes three dimensional (3D) visualization and query and analysis functions of the campus apartment system and proposes a simple method of creating 3D landscape efficiently.


Sign in / Sign up

Export Citation Format

Share Document