scholarly journals A Bayesian linear mixed model for prediction of complex traits

Author(s):  
Yang Hai ◽  
Yalu Wen

Abstract Motivation Accurate disease risk prediction is essential for precision medicine. Existing models either assume that diseases are caused by groups of predictors with small-to-moderate effects or a few isolated predictors with large effects. Their performance can be sensitive to the underlying disease mechanisms, which are usually unknown in advance. Results We developed a Bayesian linear mixed model (BLMM), where genetic effects were modelled using a hybrid of the sparsity regression and linear mixed model with multiple random effects. The parameters in BLMM were inferred through a computationally efficient variational Bayes algorithm. The proposed method can resemble the shape of the true effect size distributions, captures the predictive effects from both common and rare variants, and is robust against various disease models. Through extensive simulations and the application to a whole-genome sequencing dataset obtained from the Alzheimer’s Disease Neuroimaging Initiatives, we have demonstrated that BLMM has better prediction performance than existing methods and can detect variables and/or genetic regions that are predictive. Availability The R-package is available at https://github.com/yhai943/BLMM Supplementary information Supplementary data are available at Bioinformatics online.

2019 ◽  
Vol 36 (6) ◽  
pp. 1785-1794
Author(s):  
Jun Li ◽  
Qing Lu ◽  
Yalu Wen

Abstract Motivation The use of human genome discoveries and other established factors to build an accurate risk prediction model is an essential step toward precision medicine. While multi-layer high-dimensional omics data provide unprecedented data resources for prediction studies, their corresponding analytical methods are much less developed. Results We present a multi-kernel penalized linear mixed model with adaptive lasso (MKpLMM), a predictive modeling framework that extends the standard linear mixed models widely used in genomic risk prediction, for multi-omics data analysis. MKpLMM can capture not only the predictive effects from each layer of omics data but also their interactions via using multiple kernel functions. It adopts a data-driven approach to select predictive regions as well as predictive layers of omics data, and achieves robust selection performance. Through extensive simulation studies, the analyses of PET-imaging outcomes from the Alzheimer’s Disease Neuroimaging Initiative study, and the analyses of 64 drug responses, we demonstrate that MKpLMM consistently outperforms competing methods in phenotype prediction. Availability and implementation The R-package is available at https://github.com/YaluWen/OmicPred. Supplementary information Supplementary data are available at Bioinformatics online.


2021 ◽  
Author(s):  
Jian Yang ◽  
Longda Jiang ◽  
Zhili Zheng

Abstract Compared to linear mixed model-based genome-wide association (GWA) methods, generalized linear mixed model (GLMM)-based methods have better statistical properties when applied to binary traits but are computationally much slower. Here, leveraging efficient sparse matrix-based algorithms, we developed a GLMM-based GWA tool (called fastGWA-GLMM) that is orders of magnitude faster than the state-of-the-art tool (e.g., ~37 times faster when n=400,000) with more scalable memory usage. We show by simulation that the fastGWA-GLMM test-statistics of both common and rare variants are well-calibrated under the null, even for traits with an extreme case-control ratio (e.g., 0.1%). We applied fastGWA-GLMM to the UK Biobank data of 456,348 individuals, 11,842,647 variants and 2,989 binary traits (full summary statistics available at http://fastgwa.info/ukbimpbin) and identified 259 rare variants associated with 75 traits, demonstrating the use of imputed genotype data in a large cohort to discover rare variants for binary complex traits.


2019 ◽  
Author(s):  
Wei Zhou ◽  
Zhangchen Zhao ◽  
Jonas B. Nielsen ◽  
Lars G. Fritsche ◽  
Jonathon LeFaive ◽  
...  

AbstractWith very large sample sizes, population-based cohorts and biobanks provide an exciting opportunity to identify genetic components of complex traits. To analyze rare variants, gene or region-based multiple variant aggregate tests are commonly used to increase association test power. However, due to the substantial computation cost, existing region-based rare variant tests cannot analyze hundreds of thousands of samples while accounting for confounders, such as population stratification and sample relatedness. Here we propose a scalable generalized mixed model region-based association test that can handle large sample sizes and accounts for unbalanced case-control ratios for binary traits. This method, SAIGE-GENE, utilizes state-of-the-art optimization strategies to reduce computational and memory cost, and hence is applicable to exome-wide and genome-wide region-based analysis for hundreds of thousands of samples. Through the analysis of the HUNT study of 69,716 Norwegian samples and the UK Biobank data of 408,910 White British samples, we show that SAIGE-GENE can efficiently analyze large sample data (N > 400,000) with type I error rates well controlled.


2019 ◽  
Author(s):  
Jan A. Freudenthal ◽  
Markus J. Ankenbrand ◽  
Dominik G. Grimm ◽  
Arthur Korte

AbstractMotivationGenome-wide association studies (GWAS) are one of the most commonly used methods to detect associations between complex traits and genomic polymorphisms. As both genotyping and phenotyping of large populations has become easier, typical modern GWAS have to cope with massive amounts of data. Thus, the computational demand for these analyses grew remarkably during the last decades. This is especially true, if one wants to implement permutation-based significance thresholds, instead of using the naïve Bonferroni threshold. Permutation-based methods have the advantage to provide an adjusted multiple hypothesis correction threshold that takes the underlying phenotypic distribution into account and will thus remove the need to find the correct transformation for non Gaussian phenotypes. To enable efficient analyses of large datasets and the possibility to compute permutation-based significance thresholds, we used the machine learning framework TensorFlow to develop a linear mixed model (GWAS-Flow) that can make use of the available CPU or GPU infrastructure to decrease the time of the analyses especially for large datasets.ResultsWe were able to show that our application GWAS-Flow outperforms custom GWAS scripts in terms of speed without loosing accuracy. Apart from p-values, GWAS-Flow also computes summary statistics, such as the effect size and its standard error for each individual marker. The CPU-based version is the default choice for small data, while the GPU-based version of GWAS-Flow is especially suited for the analyses of big data.AvailabilityGWAS-Flow is freely available on GitHub (https://github.com/Joyvalley/GWAS_Flow) and is released under the terms of the MIT-License.


Forests ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 254 ◽  
Author(s):  
Omar Cabrera ◽  
Andreas Fries ◽  
Patrick Hildebrandt ◽  
Sven Günter ◽  
Reinhard Mosandl

Research Highlights: This study determined that treatment “release from competitors” causes different reactions in selected timber species respective to diametrical growth, in which the initial size of the tree (diametric class) is important. Also, the growth habit and phenological traits (defoliation) of the species must be considered, which may have an influence on growth after release. Background and Objectives: The objective of the study was to analyze the diametric growth of nine timber species after their release to answer the following questions: (i) Can the diametric growth of the selected timber species be increased by release? (ii) Does the release cause different responses among the tree species? (iii) Are other factors important, such as the initial diameter at breast height (DBH) or the general climate conditions? Materials and Methods: Four-hundred and eighty-eight trees belonging to nine timber species were selected and monitored over a three-year period. Release was applied to 197 trees, whereas 251 trees served as control trees to evaluate the response of diametrical growth. To determine the response of the trees, a linear mixed model (GLMM, R package: LMER4) was used, which was adjusted by a one-way ANOVA test. Results: All species showed a similar annual cycle respective to diametric increases, which is due to the per-humid climate in the area. Precipitation is secondary for the diametric growth because sufficient rainfall occurs throughout year. What is more important, however, are variations in temperature. However, the species responded differently to release. This is because the initial DBH and growth habit are more important factors. Therefore, the species could be classified into three specific groups: Positive, negative and no response to release. Conclusions: Species which prefer open sites responded positively to release, while shade tolerant species and species with pronounced phenological traits responded negatively. The initial DBH was also an important factor for diametric increases. This is because trees of class I (20 cm to 30 cm DBH) responded positively to the treatment, whereas for bigger or older individuals, the differences decreased or became negative.


2019 ◽  
Author(s):  
Yi Yang ◽  
Xingjie Shi ◽  
Yuling Jiao ◽  
Jian Huang ◽  
Min Chen ◽  
...  

AbstractMotivationAlthough genome-wide association studies (GWAS) have deepened our understanding of the genetic architecture of complex traits, the mechanistic links that underlie how genetic variants cause complex traits remains elusive. To advance our understanding of the underlying mechanistic links, various consortia have collected a vast volume of genomic data that enable us to investigate the role that genetic variants play in gene expression regulation. Recently, a collaborative mixed model (CoMM) [42] was proposed to jointly interrogate genome on complex traits by integrating both the GWAS dataset and the expression quantitative trait loci (eQTL) dataset. Although CoMM is a powerful approach that leverages regulatory information while accounting for the uncertainty in using an eQTL dataset, it requires individual-level GWAS data and cannot fully make use of widely available GWAS summary statistics. Therefore, statistically efficient methods that leverages transcriptome information using only summary statistics information from GWAS data are required.ResultsIn this study, we propose a novel probabilistic model, CoMM-S2, to examine the mechanistic role that genetic variants play, by using only GWAS summary statistics instead of individual-level GWAS data. Similar to CoMM which uses individual-level GWAS data, CoMM-S2 combines two models: the first model examines the relationship between gene expression and genotype, while the second model examines the relationship between the phenotype and the predicted gene expression from the first model. Distinct from CoMM, CoMM-S2 requires only GWAS summary statistics. Using both simulation studies and real data analysis, we demonstrate that even though CoMM-S2 utilizes GWAS summary statistics, it has comparable performance as CoMM, which uses individual-level GWAS [email protected] and implementationThe implement of CoMM-S2 is included in the CoMM package that can be downloaded from https://github.com/gordonliu810822/CoMM.Supplementary informationSupplementary data are available at Bioinformatics online.


2020 ◽  
Author(s):  
Zhaotong Lin ◽  
Souvik Seal ◽  
Saonli Basu

AbstractSNP heritability of a trait is measured by the proportion of total variance explained by the additive effects of genome-wide single nucleotide polymorphisms (SNPs). Linear mixed models are routinely used to estimate SNP heritability for many complex traits. The basic concept behind this approach is to model genetic contribution as a random effect, where the variance of this genetic contribution attributes to the heritability of the trait. This linear mixed model approach requires estimation of ‘relatedness’ among individuals in the sample, which is usually captured by estimating a genetic relationship matrix (GRM). Heritability is estimated by the restricted maximum likelihood (REML) or method of moments (MOM) approaches, and this estimation relies heavily on the GRM computed from the genetic data on individuals. Presence of population substructure in the data could significantly impact the GRM estimation and may introduce bias in heritability estimation. The common practice of accounting for such population substructure is to adjust for the top few principal components of the GRM as covariates in the linear mixed model. Here we propose an alternative way of estimating heritability in multi-ethnic studies. Our proposed approach is a MOM estimator derived from the Haseman-Elston regression and gives an asymptotically unbiased estimate of heritability in presence of population stratification. It introduces adjustments for the population stratification in a second-order estimating equation and allows for the total phenotypic variance vary by ethnicity. We study the performance of different MOM and REML approaches in presence of population stratification through extensive simulation studies. We estimate the heritability of height, weight and other anthropometric traits in the UK Biobank cohort to investigate the impact of subtle population substructure on SNP heritability estimation.


Genetics ◽  
2019 ◽  
Vol 212 (3) ◽  
pp. 577-586 ◽  
Author(s):  
V. Kartik Chundru ◽  
Riccardo E. Marioni ◽  
James G. D. Prendergast ◽  
Costanza L. Vallerga ◽  
Tian Lin ◽  
...  

Genetic variants disrupting DNA methylation at CpG dinucleotides (CpG-SNP) provide a set of known causal variants to serve as models to test fine-mapping methodology. We use 1716 CpG-SNPs to test three fine-mapping approaches (Bayesian imputation-based association mapping, Bayesian sparse linear mixed model, and the J-test), assessing the impact of imputation errors and the choice of reference panel by using both whole-genome sequence (WGS), and genotype array data on the same individuals (n = 1166). The choice of imputation reference panel had a strong effect on imputation accuracy, with the 1000 Genomes Project Phase 3 (1000G) reference panel (n = 2504 from 26 populations) giving a mean nonreference discordance rate between imputed and sequenced genotypes of 3.2% compared to 1.6% when using the Haplotype Reference Consortium (HRC) reference panel (n = 32,470 Europeans). These imputation errors had an impact on whether the CpG-SNP was included in the 95% credible set, with a difference of ∼23% and ∼7% between the WGS and the 1000G and HRC imputed datasets, respectively. All of the fine-mapping methods failed to reach the expected 95% coverage of the CpG-SNP. This is attributed to secondary cis genetic effects that are unable to be statistically separated from the CpG-SNP, and through a masking mechanism where the effect of the methylation disrupting allele at the CpG-SNP is hidden by the effect of a nearby SNP that has strong linkage disequilibrium with the CpG-SNP. The reduced accuracy in fine-mapping a known causal variant in a low-level biological trait with imputed genetic data has implications for the study of higher-order complex traits and disease.


2019 ◽  
Vol 35 (23) ◽  
pp. 4879-4885 ◽  
Author(s):  
Chao Ning ◽  
Dan Wang ◽  
Lei Zhou ◽  
Julong Wei ◽  
Yuanxin Liu ◽  
...  

Abstract Motivation Current dynamic phenotyping system introduces time as an extra dimension to genome-wide association studies (GWAS), which helps to explore the mechanism of dynamical genetic control for complex longitudinal traits. However, existing methods for longitudinal GWAS either ignore the covariance among observations of different time points or encounter computational efficiency issues. Results We herein developed efficient genome-wide multivariate association algorithms for longitudinal data. In contrast to existing univariate linear mixed model analyses, the proposed method has improved statistic power for association detection and computational speed. In addition, the new method can analyze unbalanced longitudinal data with thousands of individuals and more than ten thousand records within a few hours. The corresponding time for balanced longitudinal data is just a few minutes. Availability and implementation A software package to implement the efficient algorithm named GMA (https://github.com/chaoning/GMA) is available freely for interested users in relevant fields. Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Vol 36 (Supplement_1) ◽  
pp. i128-i135
Author(s):  
Rui Zhu ◽  
Chao Jiang ◽  
Xiaofeng Wang ◽  
Shuang Wang ◽  
Hao Zheng ◽  
...  

Abstract Motivation The generalized linear mixed model (GLMM) is an extension of the generalized linear model (GLM) in which the linear predictor takes random effects into account. Given its power of precisely modeling the mixed effects from multiple sources of random variations, the method has been widely used in biomedical computation, for instance in the genome-wide association studies (GWASs) that aim to detect genetic variance significantly associated with phenotypes such as human diseases. Collaborative GWAS on large cohorts of patients across multiple institutions is often impeded by the privacy concerns of sharing personal genomic and other health data. To address such concerns, we present in this paper a privacy-preserving Expectation–Maximization (EM) algorithm to build GLMM collaboratively when input data are distributed to multiple participating parties and cannot be transferred to a central server. We assume that the data are horizontally partitioned among participating parties: i.e. each party holds a subset of records (including observational values of fixed effect variables and their corresponding outcome), and for all records, the outcome is regulated by the same set of known fixed effects and random effects. Results Our collaborative EM algorithm is mathematically equivalent to the original EM algorithm commonly used in GLMM construction. The algorithm also runs efficiently when tested on simulated and real human genomic data, and thus can be practically used for privacy-preserving GLMM construction. We implemented the algorithm for collaborative GLMM (cGLMM) construction in R. The data communication was implemented using the rsocket package. Availability and implementation The software is released in open source at https://github.com/huthvincent/cGLMM. Supplementary information Supplementary data are available at Bioinformatics online.


Sign in / Sign up

Export Citation Format

Share Document