scholarly journals Ensemble learning for classifying single-cell data and projection across reference atlases

2020 ◽  
Vol 36 (11) ◽  
pp. 3585-3587
Author(s):  
Lin Wang ◽  
Francisca Catalan ◽  
Karin Shamardani ◽  
Husam Babikir ◽  
Aaron Diaz

Abstract Summary Single-cell data are being generated at an accelerating pace. How best to project data across single-cell atlases is an open problem. We developed a boosted learner that overcomes the greatest challenge with status quo classifiers: low sensitivity, especially when dealing with rare cell types. By comparing novel and published data from distinct scRNA-seq modalities that were acquired from the same tissues, we show that this approach preserves cell-type labels when mapping across diverse platforms. Availability and implementation https://github.com/diazlab/ELSA Contact [email protected] Supplementary information Supplementary data are available at Bioinformatics online.

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Alexander J Tarashansky ◽  
Jacob M Musser ◽  
Margarita Khariton ◽  
Pengyang Li ◽  
Detlev Arendt ◽  
...  

Comparing single-cell transcriptomic atlases from diverse organisms can elucidate the origins of cellular diversity and assist the annotation of new cell atlases. Yet, comparison between distant relatives is hindered by complex gene histories and diversifications in expression programs. Previously, we introduced the self-assembling manifold (SAM) algorithm to robustly reconstruct manifolds from single-cell data (Tarashansky et al., 2019). Here, we build on SAM to map cell atlas manifolds across species. This new method, SAMap, identifies homologous cell types with shared expression programs across distant species within phyla, even in complex examples where homologous tissues emerge from distinct germ layers. SAMap also finds many genes with more similar expression to their paralogs than their orthologs, suggesting paralog substitution may be more common in evolution than previously appreciated. Lastly, comparing species across animal phyla, spanning mouse to sponge, reveals ancient contractile and stem cell families, which may have arisen early in animal evolution.


2017 ◽  
Vol 3 (1) ◽  
pp. 46 ◽  
Author(s):  
Elham Azizi ◽  
Sandhya Prabhakaran ◽  
Ambrose Carr ◽  
Dana Pe'er

Single-cell RNA-seq gives access to gene expression measurements for thousands of cells, allowing discovery and characterization of cell types. However, the data is noise-prone due to experimental errors and cell type-specific biases. Current computational approaches for analyzing single-cell data involve a global normalization step which introduces incorrect biases and spurious noise and does not resolve missing data (dropouts). This can lead to misleading conclusions in downstream analyses. Moreover, a single normalization removes important cell type-specific information. We propose a data-driven model, BISCUIT, that iteratively normalizes and clusters cells, thereby separating noise from interesting biological signals. BISCUIT is a Bayesian probabilistic model that learns cell-specific parameters to intelligently drive normalization. This approach displays superior performance to global normalization followed by clustering in both synthetic and real single-cell data compared with previous methods, and allows easy interpretation and recovery of the underlying structure and cell types.


Author(s):  
Feiyang Ma ◽  
Matteo Pellegrini

Abstract Motivation Cell type identification is one of the major goals in single cell RNA sequencing (scRNA-seq). Current methods for assigning cell types typically involve the use of unsupervised clustering, the identification of signature genes in each cluster, followed by a manual lookup of these genes in the literature and databases to assign cell types. However, there are several limitations associated with these approaches, such as unwanted sources of variation that influence clustering and a lack of canonical markers for certain cell types. Here, we present ACTINN (Automated Cell Type Identification using Neural Networks), which employs a neural network with three hidden layers, trains on datasets with predefined cell types and predicts cell types for other datasets based on the trained parameters. Results We trained the neural network on a mouse cell type atlas (Tabula Muris Atlas) and a human immune cell dataset, and used it to predict cell types for mouse leukocytes, human PBMCs and human T cell sub types. The results showed that our neural network is fast and accurate, and should therefore be a useful tool to complement existing scRNA-seq pipelines. Availability and implementation The codes and datasets are available at https://figshare.com/articles/ACTINN/8967116. Tutorial is available at https://github.com/mafeiyang/ACTINN. All codes are implemented in python. Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Vol 36 (Supplement_1) ◽  
pp. i542-i550 ◽  
Author(s):  
Qiuyu Lian ◽  
Hongyi Xin ◽  
Jianzhu Ma ◽  
Liza Konnikova ◽  
Wei Chen ◽  
...  

Abstract Motivation Cellular Indexing of Transcriptomes and Epitopes by sequencing (CITE-seq), couples the measurement of surface marker proteins with simultaneous sequencing of mRNA at single cell level, which brings accurate cell surface phenotyping to single-cell transcriptomics. Unfortunately, multiplets in CITE-seq datasets create artificial cell types (ACT) and complicate the automation of cell surface phenotyping. Results We propose CITE-sort, an artificial-cell-type aware surface marker clustering method for CITE-seq. CITE-sort is aware of and is robust to multiplet-induced ACT. We benchmarked CITE-sort with real and simulated CITE-seq datasets and compared CITE-sort against canonical clustering methods. We show that CITE-sort produces the best clustering performance across the board. CITE-sort not only accurately identifies real biological cell types (BCT) but also consistently and reliably separates multiplet-induced artificial-cell-type droplet clusters from real BCT droplet clusters. In addition, CITE-sort organizes its clustering process with a binary tree, which facilitates easy interpretation and verification of its clustering result and simplifies cell-type annotation with domain knowledge in CITE-seq. Availability and implementation http://github.com/QiuyuLian/CITE-sort. Supplementary information Supplementary data is available at Bioinformatics online.


Author(s):  
Musu Yuan ◽  
Liang Chen ◽  
Minghua Deng

Abstract Motivation Single-cell RNA-seq (scRNA-seq) has been widely used to resolve cellular heterogeneity. After collecting scRNA-seq data, the natural next step is to integrate the accumulated data to achieve a common ontology of cell types and states. Thus, an effective and efficient cell-type identification method is urgently needed. Meanwhile, high quality reference data remain a necessity for precise annotation. However, such tailored reference data are always lacking in practice. To address this, we aggregated multiple datasets into a meta-dataset on which annotation is conducted. Existing supervised or semi-supervised annotation methods suffer from batch effects caused by different sequencing platforms, the effect of which increases in severity with multiple reference datasets. Results Herein, a robust deep learning based single-cell Multiple Reference Annotator (scMRA) is introduced. In scMRA, a knowledge graph is constructed to represent the characteristics of cell types in different datasets, and a graphic convolutional network (GCN) serves as a discriminator based on this graph. scMRA keeps intra-cell-type closeness and the relative position of cell types across datasets. scMRA is remarkably powerful at transferring knowledge from multiple reference datasets, to the unlabeled target domain, thereby gaining an advantage over other state-of-the-art annotation methods in multi-reference data experiments. Furthermore, scMRA can remove batch effects. To the best of our knowledge, this is the first attempt to use multiple insufficient reference datasets to annotate target data, and it is, comparatively, the best annotation method for multiple scRNA-seq datasets. Availability An implementation of scMRA is available from https://github.com/ddb-qiwang/scMRA-torch Supplementary information Supplementary data are available at Bioinformatics online.


2019 ◽  
Vol 36 (8) ◽  
pp. 2474-2485 ◽  
Author(s):  
Zhanying Feng ◽  
Xianwen Ren ◽  
Yuan Fang ◽  
Yining Yin ◽  
Chutian Huang ◽  
...  

Abstract Motivation Single cell RNA-seq data offers us new resource and resolution to study cell type identity and its conversion. However, data analyses are challenging in dealing with noise, sparsity and poor annotation at single cell resolution. Detecting cell-type-indicative markers is promising to help denoising, clustering and cell type annotation. Results We developed a new method, scTIM, to reveal cell-type-indicative markers. scTIM is based on a multi-objective optimization framework to simultaneously maximize gene specificity by considering gene-cell relationship, maximize gene’s ability to reconstruct cell–cell relationship and minimize gene redundancy by considering gene–gene relationship. Furthermore, consensus optimization is introduced for robust solution. Experimental results on three diverse single cell RNA-seq datasets show scTIM’s advantages in identifying cell types (clustering), annotating cell types and reconstructing cell development trajectory. Applying scTIM to the large-scale mouse cell atlas data identifies critical markers for 15 tissues as ‘mouse cell marker atlas’, which allows us to investigate identities of different tissues and subtle cell types within a tissue. scTIM will serve as a useful method for single cell RNA-seq data mining. Availability and implementation scTIM is freely available at https://github.com/Frank-Orwell/scTIM. Supplementary information Supplementary data are available at Bioinformatics online.


2019 ◽  
Vol 35 (23) ◽  
pp. 4962-4970
Author(s):  
Xiangqi Bai ◽  
Liang Ma ◽  
Lin Wan

Abstract Motivation Cell fate determination is a continuous process in which one cell type diversifies to other cell types following a hierarchical path. Advancements in single-cell technologies provide the opportunity to reveal the continuum of cell progression which forms a structured continuous tree (SCTree). Computational algorithms, which are usually based on a priori assumptions on the hidden structures, have previously been proposed as a means of recovering pseudo trajectory along cell differentiation process. However, there still lack of statistical framework on the assessments of intrinsic structure embedded in high-dimensional gene expression profile. Inherit noise and cell-to-cell variation underlie the single-cell data, however, pose grand challenges to testing even basic structures, such as linear versus bifurcation. Results In this study, we propose an adaptive statistical framework, termed SCTree, to test the intrinsic structure of a high-dimensional single-cell dataset. SCTree test is conducted based on the tools derived from metric geometry and random matrix theory. In brief, by extending the Gromov–Farris transform and utilizing semicircular law, we formulate the continuous tree structure testing problem into a signal matrix detection problem. We show that the SCTree test is most powerful when the signal-to-noise ratio exceeds a moderate value. We also demonstrate that SCTree is able to robustly detect linear, single and multiple branching events with simulated datasets and real scRNA-seq datasets. Overall, the SCTree test provides a unified statistical assessment of the significance of the hidden structure of single-cell data. Availability and implementation SCTree software is available at https://github.com/XQBai/SCTree-test. Supplementary information Supplementary data are available at Bioinformatics online.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
M. Büttner ◽  
J. Ostner ◽  
C. L. Müller ◽  
F. J. Theis ◽  
B. Schubert

AbstractCompositional changes of cell types are main drivers of biological processes. Their detection through single-cell experiments is difficult due to the compositionality of the data and low sample sizes. We introduce scCODA (https://github.com/theislab/scCODA), a Bayesian model addressing these issues enabling the study of complex cell type effects in disease, and other stimuli. scCODA demonstrated excellent detection performance, while reliably controlling for false discoveries, and identified experimentally verified cell type changes that were missed in original analyses.


2021 ◽  
Author(s):  
Wancen Mu ◽  
Hirak Sarkar ◽  
Avi Srivastava ◽  
Kwangbom Choi ◽  
Rob Patro ◽  
...  

Motivation: Allelic expression analysis aids in detection of cis-regulatory mechanisms of genetic variation which produce allelic imbalance (AI) in heterozygotes. Measuring AI in bulk data lacking time or spatial resolution has the limitation that cell-type-specific (CTS), spatial-, or time-dependent AI signals may be dampened or not detected. Results: We introduce a statistical method airpart for identifying differential CTS AI from single-cell RNA-sequencing (scRNA-seq) data, or other spatially- or time-resolved datasets. airpart outputs discrete partitions of data, pointing to groups of genes and cells under common mechanisms of cis-genetic regulation. In order to account for low counts in single-cell data, our method uses a Generalized Fused Lasso with Binomial likelihood for partitioning groups of cells by AI signal, and a hierarchical Bayesian model for AI statistical inference. In simulation, airpart accurately detected partitions of cell types by their AI and had lower RMSE of allelic ratio estimates than existing methods. In real data, airpart identified differential AI patterns across cell states and could be used to define trends of AI signal over spatial or time axes. Availability: The airpart package is available as a R/Bioconductor package at https://bioconductor.org/packages/airpart.


Author(s):  
Michael A. Skinnider ◽  
Jordan W. Squair ◽  
Claudia Kathe ◽  
Mark A. Anderson ◽  
Matthieu Gautier ◽  
...  

We present a machine-learning method to prioritize the cell types most responsive to biological perturbations within high-dimensional single-cell data. We validate our method, Augur (https://github.com/neurorestore/Augur), on a compendium of single-cell RNA-seq, chromatin accessibility, and imaging transcriptomics datasets. We apply Augur to expose the neural circuits that enable walking after paralysis in response to spinal cord neurostimulation.


Sign in / Sign up

Export Citation Format

Share Document