scholarly journals Pooled variable scaling for cluster analysis

2020 ◽  
Vol 36 (12) ◽  
pp. 3849-3855
Author(s):  
Jakob Raymaekers ◽  
Ruben H Zamar

Abstract Motivation Many popular clustering methods are not scale-invariant because they are based on Euclidean distances. Even methods using scale-invariant distances, such as the Mahalanobis distance, lose their scale invariance when combined with regularization and/or variable selection. Therefore, the results from these methods are very sensitive to the measurement units of the clustering variables. A simple way to achieve scale invariance is to scale the variables before clustering. However, scaling variables is a very delicate issue in cluster analysis: A bad choice of scaling can adversely affect the clustering results. On the other hand, reporting clustering results that depend on measurement units is not satisfactory. Hence, a safe and efficient scaling procedure is needed for applications in bioinformatics and medical sciences research. Results We propose a new approach for scaling prior to cluster analysis based on the concept of pooled variance. Unlike available scaling procedures, such as the SD and the range, our proposed scale avoids dampening the beneficial effect of informative clustering variables. We confirm through an extensive simulation study and applications to well-known real-data examples that the proposed scaling method is safe and generally useful. Finally, we use our approach to cluster a high-dimensional genomic dataset consisting of gene expression data for several specimens of breast cancer cells tissue obtained from human patients. Availability and implementation An R-implementation of the algorithms presented is available at https://wis.kuleuven.be/statdatascience/robust/software. Supplementary information Supplementary data are available at Bioinformatics online.

2019 ◽  
Vol 35 (20) ◽  
pp. 4029-4037 ◽  
Author(s):  
Yun Yu ◽  
Lei-Hong Zhang ◽  
Shuqin Zhang

Abstract Motivation Multiview clustering has attracted much attention in recent years. Several models and algorithms have been proposed for finding the clusters. However, these methods are developed either to find the consistent/common clusters across different views, or to identify the differential clusters among different views. In reality, both consistent and differential clusters may exist in multiview datasets. Thus, development of simultaneous clustering methods such that both the consistent and the differential clusters can be identified is of great importance. Results In this paper, we proposed one method for simultaneous clustering of multiview data based on manifold optimization. The binary optimization model for finding the clusters is relaxed to a real value optimization problem on the Stiefel manifold, which is solved by the line-search algorithm on manifold. We applied the proposed method to both simulation data and four real datasets from TCGA. Both studies show that when the underlying clusters are consistent, our method performs competitive to the state-of-the-art algorithms. When there are differential clusters, our method performs much better. In the real data study, we performed experiments on cancer stratification and differential cluster (module) identification across multiple cancer subtypes. For the patients of different subtypes, both consistent clusters and differential clusters are identified at the same time. The proposed method identifies more clusters that are enriched by gene ontology and KEGG pathways. The differential clusters could be used to explain the different mechanisms for the cancer development in the patients of different subtypes. Availability and implementation Codes can be downloaded from: http://homepage.fudan.edu.cn/sqzhang/files/2018/12/MVCMOcode.zip. Supplementary information Supplementary data are available at Bioinformatics online.


Author(s):  
Alma Andersson ◽  
Joakim Lundeberg

Abstract Motivation Collection of spatial signals in large numbers has become a routine task in multiple omics-fields, but parsing of these rich datasets still pose certain challenges. In whole or near-full transcriptome spatial techniques, spurious expression profiles are intermixed with those exhibiting an organized structure. To distinguish profiles with spatial patterns from the background noise, a metric that enables quantification of spatial structure is desirable. Current methods designed for similar purposes tend to be built around a framework of statistical hypothesis testing, hence we were compelled to explore a fundamentally different strategy. Results We propose an unexplored approach to analyze spatial transcriptomics data, simulating diffusion of individual transcripts to extract genes with spatial patterns. The method performed as expected when presented with synthetic data. When applied to real data, it identified genes with distinct spatial profiles, involved in key biological processes or characteristic for certain cell types. Compared to existing methods, ours seemed to be less informed by the genes’ expression levels and showed better time performance when run with multiple cores. Availabilityand implementation Open-source Python package with a command line interface (CLI), freely available at https://github.com/almaan/sepal under an MIT licence. A mirror of the GitHub repository can be found at Zenodo, doi: 10.5281/zenodo.4573237. Supplementary information Supplementary data are available at Bioinformatics online.


Author(s):  
Andre Maeder ◽  
Vesselin G Gueorguiev

Abstract Maxwell equations and the equations of General Relativity are scale invariant in empty space. The presence of charge or currents in electromagnetism or the presence of matter in cosmology are preventing scale invariance. The question arises on how much matter within the horizon is necessary to kill scale invariance. The scale invariant field equation, first written by Dirac in 1973 and then revisited by Canuto et al. in 1977, provides the starting point to address this question. The resulting cosmological models show that, as soon as matter is present, the effects of scale invariance rapidly decline from ϱ = 0 to ϱc, and are forbidden for densities above ϱc. The absence of scale invariance in this case is consistent with considerations about causal connection. Below ϱc, scale invariance appears as an open possibility, which also depends on the occurrence of in the scale invariant context. In the present approach, we identify the scalar field of the empty space in the Scale Invariant Vacuum (SIV) context to the scalar field ϕ in the energy density $\varrho = \frac{1}{2} \dot{\varphi }^2 + V(\varphi )$ of the vacuum at inflation. This leads to some constraints on the potential. This identification also solves the so-called “cosmological constant problem”. In the framework of scale invariance, an inflation with a large number of e-foldings is also predicted. We conclude that scale invariance for models with densities below ϱc is an open possibility; the final answer may come from high redshift observations, where differences from the ΛCDM models appear.


2020 ◽  
Vol 36 (12) ◽  
pp. 3890-3891
Author(s):  
Linjie Wu ◽  
Han Wang ◽  
Yuchao Xia ◽  
Ruibin Xi

Abstract Motivation Whole-genome sequencing (WGS) is widely used for copy number variation (CNV) detection. However, for most bacteria, their circular genome structure and high replication rate make reads more enriched near the replication origin. CNV detection based on read depth could be seriously influenced by such replication bias. Results We show that the replication bias is widespread using ∼200 bacterial WGS data. We develop CNV-BAC (CNV-Bacteria) that can properly normalize the replication bias and other known biases in bacterial WGS data and can accurately detect CNVs. Simulation and real data analysis show that CNV-BAC achieves the best performance in CNV detection compared with available algorithms. Availability and implementation CNV-BAC is available at https://github.com/XiDsLab/CNV-BAC. Supplementary information Supplementary data are available at Bioinformatics online.


2019 ◽  
Vol 36 (7) ◽  
pp. 2017-2024
Author(s):  
Weiwei Zhang ◽  
Ziyi Li ◽  
Nana Wei ◽  
Hua-Jun Wu ◽  
Xiaoqi Zheng

Abstract Motivation Inference of differentially methylated (DM) CpG sites between two groups of tumor samples with different geno- or pheno-types is a critical step to uncover the epigenetic mechanism of tumorigenesis, and identify biomarkers for cancer subtyping. However, as a major source of confounding factor, uneven distributions of tumor purity between two groups of tumor samples will lead to biased discovery of DM sites if not properly accounted for. Results We here propose InfiniumDM, a generalized least square model to adjust tumor purity effect for differential methylation analysis. Our method is applicable to a variety of experimental designs including with or without normal controls, different sources of normal tissue contaminations. We compared our method with conventional methods including minfi, limma and limma corrected by tumor purity using simulated datasets. Our method shows significantly better performance at different levels of differential methylation thresholds, sample sizes, mean purity deviations and so on. We also applied the proposed method to breast cancer samples from TCGA database to further evaluate its performance. Overall, both simulation and real data analyses demonstrate favorable performance over existing methods serving similar purpose. Availability and implementation InfiniumDM is a part of R package InfiniumPurify, which is freely available from GitHub (https://github.com/Xiaoqizheng/InfiniumPurify). Supplementary information Supplementary data are available at Bioinformatics online.


Genetics ◽  
2001 ◽  
Vol 159 (2) ◽  
pp. 699-713
Author(s):  
Noah A Rosenberg ◽  
Terry Burke ◽  
Kari Elo ◽  
Marcus W Feldman ◽  
Paul J Freidlin ◽  
...  

Abstract We tested the utility of genetic cluster analysis in ascertaining population structure of a large data set for which population structure was previously known. Each of 600 individuals representing 20 distinct chicken breeds was genotyped for 27 microsatellite loci, and individual multilocus genotypes were used to infer genetic clusters. Individuals from each breed were inferred to belong mostly to the same cluster. The clustering success rate, measuring the fraction of individuals that were properly inferred to belong to their correct breeds, was consistently ~98%. When markers of highest expected heterozygosity were used, genotypes that included at least 8–10 highly variable markers from among the 27 markers genotyped also achieved >95% clustering success. When 12–15 highly variable markers and only 15–20 of the 30 individuals per breed were used, clustering success was at least 90%. We suggest that in species for which population structure is of interest, databases of multilocus genotypes at highly variable markers should be compiled. These genotypes could then be used as training samples for genetic cluster analysis and to facilitate assignments of individuals of unknown origin to populations. The clustering algorithm has potential applications in defining the within-species genetic units that are useful in problems of conservation.


2020 ◽  
Vol 36 (11) ◽  
pp. 3431-3438
Author(s):  
Ziyi Li ◽  
Zhenxing Guo ◽  
Ying Cheng ◽  
Peng Jin ◽  
Hao Wu

Abstract Motivation In the analysis of high-throughput omics data from tissue samples, estimating and accounting for cell composition have been recognized as important steps. High cost, intensive labor requirements and technical limitations hinder the cell composition quantification using cell-sorting or single-cell technologies. Computational methods for cell composition estimation are available, but they are either limited by the availability of a reference panel or suffer from low accuracy. Results We introduce TOols for the Analysis of heterogeneouS Tissues TOAST/-P and TOAST/+P, two partial reference-free algorithms for estimating cell composition of heterogeneous tissues based on their gene expression profiles. TOAST/-P and TOAST/+P incorporate additional biological information, including cell-type-specific markers and prior knowledge of compositions, in the estimation procedure. Extensive simulation studies and real data analyses demonstrate that the proposed methods provide more accurate and robust cell composition estimation than existing methods. Availability and implementation The proposed methods TOAST/-P and TOAST/+P are implemented as part of the R/Bioconductor package TOAST at https://bioconductor.org/packages/TOAST. Contact [email protected] or [email protected] Supplementary information Supplementary data are available at Bioinformatics online.


2003 ◽  
Vol 01 (03) ◽  
pp. 447-458 ◽  
Author(s):  
Xiwei Wu ◽  
T. Gregory Dewey

Cluster analysis has proven to be a valuable statistical method for analyzing whole genome expression data. Although clustering methods have great utility, they do represent a lower level statistical analysis that is not directly tied to a specific model. To extend such methods and to allow for more sophisticated lines of inference, we use cluster analysis in conjunction with a specific model of gene expression dynamics. This model provides phenomenological dynamic parameters on both linear and non-linear responses of the system. This analysis determines the parameters of two different transition matrices (linear and nonlinear) that describe the influence of one gene expression level on another. Using yeast cell cycle microarray data as test set, we calculated the transition matrices and used these dynamic parameters as a metric for cluster analysis. Hierarchical cluster analysis of this transition matrix reveals how a set of genes influence the expression of other genes activated during different cell cycle phases. Most strikingly, genes in different stages of cell cycle preferentially activate or inactivate genes in other stages of cell cycle, and this relationship can be readily visualized in a two-way clustering image. The observation is prior to any knowledge of the chronological characteristics of the cell cycle process. This method shows the utility of using model parameters as a metric in cluster analysis.


2019 ◽  
Vol 7 (4) ◽  
pp. 23-34
Author(s):  
I. A. Osmakov ◽  
T. A. Savelieva ◽  
V. B. Loschenov ◽  
S. A. Goryajnov ◽  
A. A. Potapov

The paper presents the results of a comparative study of methods of cluster analysis of optical intraoperative spectroscopy data during surgery of glial tumors with varying degree of malignancy. The analysis was carried out both for individual patients and for the entire dataset. The data were obtained using combined optical spectroscopy technique, which allowed simultaneous registration of diffuse reflectance spectra of broadband radiation in the 500–600 nm spectral range (for the analysis of tissue blood supply and the degree of hemoglobin oxygenation), fluorescence spectra of 5‑ALA induced protoporphyrin IX (Pp IX) (for analysis of the malignancy degree) and signal of diffusely reflected laser light used to excite Pp IX fluorescence (to take into account the scattering properties of tissues). To determine the threshold values of these parameters for the tumor, the infltration zone and the normal white matter, we searched for the natural clusters in the available intraoperative optical spectroscopy data and compared them with the results of the pathomorphology. It was shown that, among the considered clustering methods, EM‑algorithm and k‑means methods are optimal for the considered data set and can be used to build a decision support system (DSS) for spectroscopic intraoperative navigation in neurosurgery. Results of clustering relevant to thepathological studies were also obtained using the methods of spectral and agglomerative clustering. These methods can be used to postprocess combined spectroscopy data.


Author(s):  
Laura Macia

In this article I discuss cluster analysis as an exploratory tool to support the identification of associations within qualitative data. While not appropriate for all qualitative projects, cluster analysis can be particularly helpful in identifying patterns where numerous cases are studied. I use as illustration a research project on Latino grievances to offer a detailed explanation of the main steps in cluster analysis, providing specific considerations for its use with qualitative data. I specifically describe the issues of data transformation, the choice of clustering methods and similarity measures, the identification of a cluster solution, and the interpretation of the data in a qualitative context.


Sign in / Sign up

Export Citation Format

Share Document