SMI-BLAST: a novel supervised search framework based on PSI-BLAST for protein remote homology detection

Author(s):  
Xiaopeng Jin ◽  
Qing Liao ◽  
Hang Wei ◽  
Jun Zhang ◽  
Bin Liu

Abstract Motivation As one of the most important and widely used mainstream iterative search tool for protein sequence search, an accurate Position-Specific Scoring Matrix (PSSM) is the key of PSI-BLAST. However, PSSMs containing non-homologous information obviously reduce the performance of PSI-BLAST for protein remote homology. Results To further study this problem, we summarize three types of Incorrectly Selected Homology (ISH) errors in PSSMs. A new search tool Supervised-Manner-based Iterative BLAST (SMI-BLAST) is proposed based on PSI-BLAST for solving these errors. SMI-BLAST obviously outperforms PSI-BLAST on the Structural Classification of Proteins-extended (SCOPe) dataset. Compared with PSI-BLAST on the ISH error subsets of SCOPe dataset, SMI-BLAST detects 1.6–2.87 folds more remote homologous sequences, and outperforms PSI-BLAST by 35.66% in terms of ROC1 scores. Furthermore, this framework is applied to JackHMMER, DELTA-BLAST and PSI-BLASTexB, and their performance is further improved. Availability and implementation User-friendly webservers for SMI-BLAST, JackHMMER, DELTA-BLAST and PSI-BLASTexB are established at http://bliulab.net/SMI-BLAST/, by which the users can easily get the results without the need to go through the mathematical details. Supplementary information Supplementary data are available at Bioinformatics online.

1998 ◽  
Vol 54 (6) ◽  
pp. 1147-1154 ◽  
Author(s):  
Tim J. P. Hubbard ◽  
Bart Ailey ◽  
Steven E. Brenner ◽  
Alexey G. Murzin ◽  
Cyrus Chothia

The Structural Classification of Proteins (SCOP) database provides a detailed and comprehensive description of the relationships of all known protein structures. The classification is on hierarchical levels: the first two levels, family and superfamily, describe near and far evolutionary relationships; the third, fold, describes geometrical relationships. The distinction between evolutionary relationships and those that arise from the physics and chemistry of proteins is a feature that is unique to this database, so far. The database can be used as a source of data to calibrate sequence search algorithms and for the generation of population statistics on protein structures. The database and its associated files are freely accessible from a number of WWW sites mirrored from URL http://scop.mrc-lmb.cam.ac.uk/scop/.


2013 ◽  
Vol 30 (4) ◽  
pp. 472-479 ◽  
Author(s):  
Bin Liu ◽  
Deyuan Zhang ◽  
Ruifeng Xu ◽  
Jinghao Xu ◽  
Xiaolong Wang ◽  
...  

Abstract Motivation: Owing to its importance in both basic research (such as molecular evolution and protein attribute prediction) and practical application (such as timely modeling the 3D structures of proteins targeted for drug development), protein remote homology detection has attracted a great deal of interest. It is intriguing to note that the profile-based approach is promising and holds high potential in this regard. To further improve protein remote homology detection, a key step is how to find an optimal means to extract the evolutionary information into the profiles. Results: Here, we propose a novel approach, the so-called profile-based protein representation, to extract the evolutionary information via the frequency profiles. The latter can be calculated from the multiple sequence alignments generated by PSI-BLAST. Three top performing sequence-based kernels (SVM-Ngram, SVM-pairwise and SVM-LA) were combined with the profile-based protein representation. Various tests were conducted on a SCOP benchmark dataset that contains 54 families and 23 superfamilies. The results showed that the new approach is promising, and can obviously improve the performance of the three kernels. Furthermore, our approach can also provide useful insights for studying the features of proteins in various families. It has not escaped our notice that the current approach can be easily combined with the existing sequence-based methods so as to improve their performance as well. Availability and implementation: For users’ convenience, the source code of generating the profile-based proteins and the multiple kernel learning was also provided at http://bioinformatics.hitsz.edu.cn/main/∼binliu/remote/ Contact: [email protected] or [email protected] Supplementary information: Supplementary data are available at Bioinformatics online.


2013 ◽  
Vol 411-414 ◽  
pp. 3227-3231
Author(s):  
Dong Wang ◽  
Ting Song ◽  
Bin Liu

Classifiers based on discriminant model achieved the highest accuracy compared to other protein classification methods in remote homology detection, but all of the classifiers were troubled by imbalance training in modeling. This paper presented a protein classification based on optimization of discriminant model to further improve the classifier performance by setting different penalty coefficients for the positive and negative samples to balance the training set weights. Comparative experiments show that the method based on optimized discriminant model obtained higher accuracy, and the method can improve the performance of all classifiers based on discriminant model by optimization of the parameters.


F1000Research ◽  
2013 ◽  
Vol 2 ◽  
pp. 93 ◽  
Author(s):  
Adwait Govind Joshi ◽  
Upadhyayula Surya Raghavender ◽  
Ramanathan Sowdhamini

The protein sequence space is vast and diverse, spanning across different families. Biologically meaningful relationships exist between proteins at superfamily level. However, it is highly challenging to establish convincing relationships at the superfamily level by means of simple sequence searches. It is necessary to design a rigorous sequence search strategy to establish remote homology relationships and achieve high coverage. We have used iterative profile-based methods, along with constraints of sequence motifs, to specify search directions. We address the importance of multiple start points (queries) to achieve high coverage at protein superfamily level. We have devised strategies to employ a structural regime to search sequence space with good specificity and sensitivity. We employ two well-known sequence search methods, PSI-BLAST and PHI-BLAST, with multiple queries and multiple patterns to enhance homologue identification at the structural superfamily level. The study suggests that multiple queries improve sensitivity, while a pattern-constrained iterative sequence search becomes stringent at the initial stages, thereby driving the search in a specific direction and also achieves high coverage. This data mining approach has been applied to the entire structural superfamily database.


F1000Research ◽  
2014 ◽  
Vol 2 ◽  
pp. 93 ◽  
Author(s):  
Adwait Govind Joshi ◽  
Upadhyayula Surya Raghavender ◽  
Ramanathan Sowdhamini

The protein sequence space is vast and diverse, spanning across different families. Biologically meaningful relationships exist between proteins at superfamily level. However, it is highly challenging to establish convincing relationships at the superfamily level by means of simple sequence searches. It is necessary to design a rigorous sequence search strategy to establish remote homology relationships and achieve high coverage. We have used iterative profile-based methods, along with constraints of sequence motifs, to specify search directions. We address the importance of multiple start points (queries) to achieve high coverage at protein superfamily level. We have devised strategies to employ a structural regime to search sequence space with good specificity and sensitivity. We employ two well-known sequence search methods, PSI-BLAST and PHI-BLAST, with multiple queries and multiple patterns to enhance homologue identification at the structural superfamily level. The study suggests that multiple queries improve sensitivity, while a pattern-constrained iterative sequence search becomes stringent at the initial stages, thereby driving the search in a specific direction and also achieves high coverage. This data mining approach has been applied to the entire structural superfamily database.


Author(s):  
Pavel Beran ◽  
Dagmar Stehlíková ◽  
Stephen P Cohen ◽  
Vladislav Čurn

Abstract Summary Searching for amino acid or nucleic acid sequences unique to one organism may be challenging depending on size of the available datasets. K-mer elimination by cross-reference (KEC) allows users to quickly and easily find unique sequences by providing target and non-target sequences. Due to its speed, it can be used for datasets of genomic size and can be run on desktop or laptop computers with modest specifications. Availability and implementation KEC is freely available for non-commercial purposes. Source code and executable binary files compiled for Linux, Mac and Windows can be downloaded from https://github.com/berybox/KEC. Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Vol 36 (Supplement_2) ◽  
pp. i857-i865
Author(s):  
Derrick Blakely ◽  
Eamon Collins ◽  
Ritambhara Singh ◽  
Andrew Norton ◽  
Jack Lanchantin ◽  
...  

Abstract Motivation Gapped k-mer kernels with support vector machines (gkm-SVMs) have achieved strong predictive performance on regulatory DNA sequences on modestly sized training sets. However, existing gkm-SVM algorithms suffer from slow kernel computation time, as they depend exponentially on the sub-sequence feature length, number of mismatch positions, and the task’s alphabet size. Results In this work, we introduce a fast and scalable algorithm for calculating gapped k-mer string kernels. Our method, named FastSK, uses a simplified kernel formulation that decomposes the kernel calculation into a set of independent counting operations over the possible mismatch positions. This simplified decomposition allows us to devise a fast Monte Carlo approximation that rapidly converges. FastSK can scale to much greater feature lengths, allows us to consider more mismatches, and is performant on a variety of sequence analysis tasks. On multiple DNA transcription factor binding site prediction datasets, FastSK consistently matches or outperforms the state-of-the-art gkmSVM-2.0 algorithms in area under the ROC curve, while achieving average speedups in kernel computation of ∼100× and speedups of ∼800× for large feature lengths. We further show that FastSK outperforms character-level recurrent and convolutional neural networks while achieving low variance. We then extend FastSK to 7 English-language medical named entity recognition datasets and 10 protein remote homology detection datasets. FastSK consistently matches or outperforms these baselines. Availability and implementation Our algorithm is available as a Python package and as C++ source code at https://github.com/QData/FastSK Supplementary information Supplementary data are available at Bioinformatics online.


Author(s):  
Ferhat Alkan ◽  
Joana Silva ◽  
Eric Pintó Barberà ◽  
William J Faller

Abstract Motivation Ribosome Profiling (Ribo-seq) has revolutionized the study of RNA translation by providing information on ribosome positions across all translated RNAs with nucleotide-resolution. Yet several technical limitations restrict the sequencing depth of such experiments, the most common of which is the overabundance of rRNA fragments. Various strategies can be employed to tackle this issue, including the use of commercial rRNA depletion kits. However, as they are designed for more standardized RNAseq experiments, they may perform suboptimally in Ribo-seq. In order to overcome this, it is possible to use custom biotinylated oligos complementary to the most abundant rRNA fragments, however currently no computational framework exists to aid the design of optimal oligos. Results Here, we first show that a major confounding issue is that the rRNA fragments generated via Ribo-seq vary significantly with differing experimental conditions, suggesting that a “one-size-fits-all” approach may be inefficient. Therefore we developed Ribo-ODDR, an oligo design pipeline integrated with a user-friendly interface that assists in oligo selection for efficient experiment-specific rRNA depletion. Ribo-ODDR uses preliminary data to identify the most abundant rRNA fragments, and calculates the rRNA depletion efficiency of potential oligos. We experimentally show that Ribo-ODDR designed oligos outperform commercially available kits and lead to a significant increase in rRNA depletion in Ribo-seq. Availability Ribo-ODDR is freely accessible at https://github.com/fallerlab/Ribo-ODDR Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Vol 36 (12) ◽  
pp. 3913-3915
Author(s):  
Hemi Luan ◽  
Xingen Jiang ◽  
Fenfen Ji ◽  
Zhangzhang Lan ◽  
Zongwei Cai ◽  
...  

Abstract Motivation Liquid chromatography–mass spectrometry-based non-targeted metabolomics is routinely performed to qualitatively and quantitatively analyze a tremendous amount of metabolite signals in complex biological samples. However, false-positive peaks in the datasets are commonly detected as metabolite signals by using many popular software, resulting in non-reliable measurement. Results To reduce false-positive calling, we developed an interactive web tool, termed CPVA, for visualization and accurate annotation of the detected peaks in non-targeted metabolomics data. We used a chromatogram-centric strategy to unfold the characteristics of chromatographic peaks through visualization of peak morphology metrics, with additional functions to annotate adducts, isotopes and contaminants. CPVA is a free, user-friendly tool to help users to identify peak background noises and contaminants, resulting in decrease of false-positive or redundant peak calling, thereby improving the data quality of non-targeted metabolomics studies. Availability and implementation The CPVA is freely available at http://cpva.eastus.cloudapp.azure.com. Source code and installation instructions are available on GitHub: https://github.com/13479776/cpva. Supplementary information Supplementary data are available at Bioinformatics online.


Sign in / Sign up

Export Citation Format

Share Document