PATHOME-Drug: a subpathway-based polypharmacology drug-repositioning method

Author(s):  
Seungyoon Nam ◽  
Sungyoung Lee ◽  
Sungjin Park ◽  
Jinhyuk Lee ◽  
Aron Park ◽  
...  

Abstract Motivation Drug repositioning reveals novel indications for existing drugs and in particular, diseases with no available drugs. Diverse computational drug repositioning methods have been proposed by measuring either drug-treated gene expression signatures or the proximity of drug targets and disease proteins found in prior networks. However, these methods do not explain which signaling subparts allow potential drugs to be selected, and do not consider polypharmacology, i.e. multiple targets of a known drug, in specific subparts. Results Here, to address the limitations, we developed a subpathway-based polypharmacology drug repositioning method, PATHOME-Drug, based on drug-associated transcriptomes. Specifically, this tool locates subparts of signaling cascading related to phenotype changes (e.g. disease status changes), and identifies existing approved drugs such that their multiple targets are enriched in the subparts. We show that our method demonstrated better performance for detecting signaling context and specific drugs/compounds, compared to WebGestalt and clusterProfiler, for both real biological and simulated datasets. We believe that our tool can successfully address the current shortage of targeted therapy agents. Availability and implementation The web-service is available at http://statgen.snu.ac.kr/software/pathome. The source codes and data are available at https://github.com/labnams/pathome-drug. Supplementary information Supplementary data are available at Bioinformatics online.

2018 ◽  
Vol 20 (4) ◽  
pp. 1465-1474 ◽  
Author(s):  
Ming Hao ◽  
Stephen H Bryant ◽  
Yanli Wang

AbstractWhile novel technologies such as high-throughput screening have advanced together with significant investment by pharmaceutical companies during the past decades, the success rate for drug development has not yet been improved prompting researchers looking for new strategies of drug discovery. Drug repositioning is a potential approach to solve this dilemma. However, experimental identification and validation of potential drug targets encoded by the human genome is both costly and time-consuming. Therefore, effective computational approaches have been proposed to facilitate drug repositioning, which have proved to be successful in drug discovery. Doubtlessly, the availability of open-accessible data from basic chemical biology research and the success of human genome sequencing are crucial to develop effective in silico drug repositioning methods allowing the identification of potential targets for existing drugs. In this work, we review several chemogenomic data-driven computational algorithms with source codes publicly accessible for predicting drug–target interactions (DTIs). We organize these algorithms by model properties and model evolutionary relationships. We re-implemented five representative algorithms in R programming language, and compared these algorithms by means of mean percentile ranking, a new recall-based evaluation metric in the DTI prediction research field. We anticipate that this review will be objective and helpful to researchers who would like to further improve existing algorithms or need to choose appropriate algorithms to infer potential DTIs in the projects. The source codes for DTI predictions are available at: https://github.com/minghao2016/chemogenomicAlg4DTIpred.


2019 ◽  
Vol 35 (21) ◽  
pp. 4501-4503 ◽  
Author(s):  
Petar V Todorov ◽  
Benjamin M Gyori ◽  
John A Bachman ◽  
Peter K Sorger

Abstract Summary INDRA-IPM (Interactive Pathway Map) is a web-based pathway map modeling tool that combines natural language processing with automated model assembly and visualization. INDRA-IPM contextualizes models with expression data and exports them to standard formats. Availability and implementation INDRA-IPM is available at: http://pathwaymap.indra.bio. Source code is available at http://github.com/sorgerlab/indra_pathway_map. The underlying web service API is available at http://api.indra.bio:8000. Supplementary information Supplementary data are available at Bioinformatics online.


2019 ◽  
Vol 35 (20) ◽  
pp. 4190-4192 ◽  
Author(s):  
Vincenzo Belcastro ◽  
Stephane Cano ◽  
Diego Marescotti ◽  
Stefano Acali ◽  
Carine Poussin ◽  
...  

Abstract Summary GladiaTOX R package is an open-source, flexible solution to high-content screening data processing and reporting in biomedical research. GladiaTOX takes advantage of the ‘tcpl’ core functionalities and provides a number of extensions: it provides a web-service solution to fetch raw data; it computes severity scores and exports ToxPi formatted files; furthermore it contains a suite of functionalities to generate PDF reports for quality control and data processing. Availability and implementation GladiaTOX R package (bioconductor). Also available via: git clone https://github.com/philipmorrisintl/GladiaTOX.git. Supplementary information Supplementary data are available at Bioinformatics online.


2021 ◽  
Author(s):  
Jigisha Anand ◽  
Tanmay Ghildiyal ◽  
Aakanksha Madhwal ◽  
Rishabh Bhatt ◽  
Devvret Verma ◽  
...  

Background: In the current SARS-CoV-2 outbreak, drug repositioning emerges as a promising approach to develop efficient therapeutics in comparison to de novo drug development. The present investigation screened 130 US FDA-approved drugs including hypertension, cardiovascular diseases, respiratory tract infections (RTI), antibiotics and antiviral drugs for their inhibitory potential against SARS-CoV-2. Materials & methods: The molecular drug targets against SARS-CoV-2 proteins were determined by the iGEMDOCK computational docking tool. The protein homology models were generated through SWISS Model workspace. The pharmacokinetics of all the ligands was determined by ADMET analysis. Results: The study identified 15 potent drugs exhibiting significant inhibitory potential against SARS-CoV-2. Conclusion: Our investigation has identified possible repurposed drug candidates to improve the current modus operandi of the treatment given to COVID-19 patients.


2019 ◽  
Vol 35 (21) ◽  
pp. 4413-4418 ◽  
Author(s):  
Mustafa Solmaz ◽  
Adam Lane ◽  
Bilal Gonen ◽  
Ogulsheker Akmamedova ◽  
Mehmet H Gunes ◽  
...  

Abstract Motivation An important goal of cancer genomics initiatives is to provide the research community with the resources for the unbiased query of cancer mechanisms. Several excellent web platforms have been developed to enable the visual analyses of molecular alterations in cancers from these datasets. However, there are few tools to allow the researchers to mine these resources for mechanisms of cancer processes and their functional interactions in an intuitive unbiased manner. Results To address this need, we developed SEMA, a web platform for building and testing of models of cancer mechanisms from large multidimensional cancer genomics datasets. Unlike the existing tools for the analyses and query of these resources, SEMA is explicitly designed to enable exploratory and confirmatory analyses of complex cancer mechanisms through a suite of intuitive visual and statistical functionalities. Here, we present a case study of the functional mechanisms of TP53-mediated tumor suppression in various cancers, using SEMA, and identify its role in the regulation of cell cycle progression, DNA repair and signal transduction in different cancers. SEMA is a first-in-its-class web application designed to allow visual data mining and hypothesis testing from the multidimensional cancer datasets. The web application, an extensive tutorial and several video screencasts with case studies are freely available for academic use at https://sema.research.cchmc.org/. Availability and implementation SEMA is freely available at https://sema.research.cchmc.org. The web site also contains a detailed Tutorial (also in Supplementary Information), and a link to the YouTube channel for video screencasts of analyses, including the analyses presented here. The Shiny and JavaScript source codes have been deposited to GitHub: https://github.com/msolmazm/sema. Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Vol 36 (19) ◽  
pp. 4833-4837
Author(s):  
Dan Wang ◽  
Hui Tang ◽  
Jian-Feng Liu ◽  
Shizhong Xu ◽  
Qin Zhang ◽  
...  

Abstract Summary We have developed a rapid mixed model algorithm for exhaustive genome-wide epistatic association analysis by controlling multiple polygenic effects. Our model can simultaneously handle additive by additive epistasis, dominance by dominance epistasis and additive by dominance epistasis, and account for intrasubject fluctuations due to individuals with repeated records. Furthermore, we suggest a simple but efficient approximate algorithm, which allows the examination of all pairwise interactions in a remarkably fast manner of linear with population size. Simulation studies are performed to investigate the properties of REMMAX. Application to publicly available yeast and human data has showed that our mixed model-based method has similar performance with simple linear model on computational efficiency. It took less than 40 h for the pairwise analysis of 5000 individuals genotyped with roughly 350 000 SNPs with five threads on Intel Xeon E5 2.6 GHz CPU. Availability and implementation Source codes are freely available at https://github.com/chaoning/GMAT. Supplementary information Supplementary data are available at Bioinformatics online.


2019 ◽  
Vol 26 (23) ◽  
pp. 4355-4379 ◽  
Author(s):  
Carolina Horta Andrade ◽  
Bruno Junior Neves ◽  
Cleber Camilo Melo-Filho ◽  
Juliana Rodrigues ◽  
Diego Cabral Silva ◽  
...  

Only ~1% of all drug candidates against Neglected Tropical Diseases (NTDs) have reached clinical trials in the last decades, underscoring the need for new, safe and effective treatments. In such context, drug repositioning, which allows finding novel indications for approved drugs whose pharmacokinetic and safety profiles are already known, emerging as a promising strategy for tackling NTDs. Chemogenomics is a direct descendent of the typical drug discovery process that involves the systematic screening of chemical compounds against drug targets in high-throughput screening (HTS) efforts, for the identification of lead compounds. However, different to the one-drug-one-target paradigm, chemogenomics attempts to identify all potential ligands for all possible targets and diseases. In this review, we summarize current methodological development efforts in drug repositioning that use state-of-the-art computational ligand- and structure-based chemogenomics approaches. Furthermore, we highlighted the recent progress in computational drug repositioning for some NTDs, based on curation and modeling of genomic, biological, and chemical data. Additionally, we also present in-house and other successful examples and suggest possible solutions to existing pitfalls.


Author(s):  
Michele Berselli ◽  
Enrico Lavezzo ◽  
Stefano Toppo

Abstract Motivation G-quadruplexes (G4s) are non-canonical nucleic acid conformations that are widespread in all kingdoms of life and are emerging as important regulators both in RNA and DNA. Recently, two new higher-order architectures have been reported: adjacent interacting G4s, and G4s with stable long loops forming stem-loop structures. As there are no specialized tools to identify these conformations, we developed QPARSE. Results QPARSE can exhaustively search for degenerate potential quadruplex-forming sequences (PQSs) containing bulges and/or mismatches at genomic level, as well as either multimeric or long-looped PQS (MPQS and LLPQS respectively). While its assessment vs. known reference datasets is comparable with the state-of-the-art, what is more interesting is its performance in the identification of MPQS and LLPQS that present algorithms are not designed to search for. We report a comprehensive analysis of MPQS in human gene promoters and the analysis of LLPQS on three experimentally validated case studies from HIV-1, BCL2, and hTERT. Availability QPARSE is freely accessible on the web at http://www.medcomp.medicina.unipd.it/qparse/index or downloadable from github as a python 2.7 program https://github.com/B3rse/qparse Supplementary information Supplementary data are available at Bioinformatics online.


2014 ◽  
Vol 31 (5) ◽  
pp. 773-775 ◽  
Author(s):  
Carlos Fenollosa ◽  
Marcel Otón ◽  
Pau Andrio ◽  
Jorge Cortés ◽  
Modesto Orozco ◽  
...  

Abstract Motivation: The SEABED web server integrates a variety of docking and QSAR techniques in a user-friendly environment. SEABED goes beyond the basic docking and QSAR web tools and implements extended functionalities like receptor preparation, library editing, flexible ensemble docking, hybrid docking/QSAR experiments or virtual screening on protein mutants. SEABED is not a monolithic workflow tool but Software as a Service platform. Availability and implementation: SEABED is a free web server available athttp://www.bsc.es/SEABED. No registration is required. Contact: [email protected] Supplementary information: Supplementary data are available atBioinformatics online.


Author(s):  
Blaž Škrlj ◽  
Nika Eržen ◽  
Nada Lavrač ◽  
Tanja Kunej ◽  
Janez Konc

Abstract Motivation Causal biological interaction networks represent cellular regulatory pathways. Their fusion with other biological data enables insights into disease mechanisms and novel opportunities for drug discovery. Results We developed Causal Network of Diseases (CaNDis), a web server for the exploration of a human causal interaction network, which we expanded with data on diseases and FDA-approved drugs, on the basis of which we constructed a disease–disease network in which the links represent the similarity between diseases. We show how CaNDis can be used to identify candidate genes with known and novel roles in disease co-occurrence and drug–drug interactions. Availabilityand implementation CaNDis is freely available to academic users at http://candis.ijs.si and http://candis.insilab.org. Supplementary information Supplementary data are available at Bioinformatics online.


Sign in / Sign up

Export Citation Format

Share Document