scholarly journals twoddpcr: an R/Bioconductor package and Shiny app for Droplet Digital PCR analysis

2017 ◽  
Vol 33 (17) ◽  
pp. 2743-2745 ◽  
Author(s):  
Anthony Chiu ◽  
Mahmood Ayub ◽  
Caroline Dive ◽  
Ged Brady ◽  
Crispin J Miller
2016 ◽  
Vol 61 ◽  
pp. S185
Author(s):  
A. Chiu ◽  
G. Brady ◽  
M. Ayub ◽  
C. Dive ◽  
C. Miller

Biology ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 379
Author(s):  
Salvatore Crimi ◽  
Luca Falzone ◽  
Giuseppe Gattuso ◽  
Caterina Maria Grillo ◽  
Saverio Candido ◽  
...  

Despite the availability of screening programs, oral cancer deaths are increasing due to the lack of diagnostic biomarkers leading to late diagnosis and a poor prognosis. Therefore, there is an urgent need to discover novel effective biomarkers for this tumor. On these bases, the aim of this study was to validate the diagnostic potential of microRNAs (miRNAs) through the analysis of liquid biopsy samples obtained from ten oral cancer patients and ten healthy controls. The expression of four selected miRNAs was evaluated by using droplet digital PCR (ddPCR) in a pilot cohort of ten oral cancer patients and ten healthy donors. Bioinformatics analyses were performed to assess the functional role of these miRNAs. The expression levels of the predicted down-regulated hsa-miR-133a-3p and hsa-miR-375-3p were significantly reduced in oral cancer patients compared to normal individuals while no significant results were obtained for the up-regulated hsa-miR-503-5p and hsa-miR-196a-5p. ROC analysis confirmed the high sensitivity and specificity of hsa-miR-375-3p and hsa-miR-133a-3p. Therefore, both miRNAs are significantly down-regulated in cancer patients and can be used as biomarkers for the early diagnosis of oral cancer. The analysis of circulating miRNAs in a larger series of patients is mandatory to confirm the results obtained in this pilot study.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4989-4989 ◽  
Author(s):  
Nicoletta Coccaro ◽  
Antonella Zagaria ◽  
Luisa Anelli ◽  
Giuseppina Tota ◽  
Paola Orsini ◽  
...  

Abstract Introduction. BCR-ABL1 tyrosine kinase inhibitors (TKIs) are considered an important component of treatment for adult patients affected by Philadelphia-positive (Ph+) acute lymphoblastic leukemia (ALL). In fact, recent studies reported that treating Ph+ ALL with the combination of imatinib and multi-agent chemotherapy improved the overall outcome. Currently, no data are available on the impact of TKIs on minimal residual disease (MRD) in Ph+ ALL. In fact, although the real-time quantitative PCR (RQ-PCR) method, usually employed for monitoring the BCR-ABL1 residual transcript, is sensitive and easy to perform, it lacks a full standardization and international quality validation. Here, we describe a highly sensitive and reproducible droplet digital PCR (ddPCR) test to monitor BCR-ABL1 transcript level in Ph+ ALL. Methods. BCR-ABL1 expression analysis by ddPCR was performed in twenty-two newly diagnosed adult Ph+ ALL patients.The diagnosis was confirmed by qualitative RT-PCR specific for the BCR-ABL1 p190 fusion gene detection. ddPCR experiments were successfully performed in all twenty-two patients at the onset; several follow-up points were evaluated in thirteen patients. ddPCR experiments were performed using primers and probes specific for BCR-ABL1 p190. GUSB was used as control gene. Fifty ng and 750 ng of cDNA templates were used for the onset and for the post-treatment samples, respectively. To increase the limit of detection (LOD), three replicates were run for the post-treatment samples. ddPCR experiments were performed by Bio-Rad's QX200 system and ddPCR data were analyzed with QuantaSoft analysis software (version 1.7.4). Target concentration was expressed as BCR-ABL1 copies/mg. Results. First, we defined the LOD of the BCR-ABL1 p190 ddPCR system, a 10-fold dilution series (100, 10-1, 10-2, 10-3, 10-4, and 10-5) of a pool of p190 positive patients using a diluent-pool of healthy volunteers. This analysis showed remarkable linearity, trueness, and precision down to 10-5. After converting to log-log scale, linear regression showed no concentration-dependent bias, and R2 equaled 0.996. Because the negative samples showed no background, even the detection of a single droplet per well was considered a positive result. The median concentration of the BCR-ABL1 transcript at the onset was 233.8 (min 3.24 - max 1744) x 103BCR-ABL1 copies/mg. Concerning the analysis of follow-up samples, among the thirty-four points that were negative to qualitative nested RT-PCR, twenty-three (68%) resulted to be positive by ddPCR analysis, with a median concentration of 44.95 (min 0.27 - max 573.3) BCR-ABL1 copies/mg. Follow-up points that were negative in ddPCR remained negative even when the experiments were repeated increasing the depth of the analysis, evaluating a total quantity of 4.5 mg of RNA. Conclusions. This study indicates that, as compared to RQ-PCR, ddPCR increases the depth of the quantitative analysis of BCR-ABL1 p190 fusion transcript by allowing the evaluation of larger amounts of RNA. Moreover, our preliminary data revealed that the amount of the BCR-ABL1 fusion transcript at diagnosis is heterogeneous and that the ddPCR is much more sensitive than nested qualitative RT-PCR analysis, as the 68% of samples negative to nested PCR during the follow-up resulted to be positive by ddPCR. Therefore, we suggest that ddPCR represents a precise, sensitive and rapid method for both diagnosis and MRD monitoring of Ph+ ALL patients. Disclosures No relevant conflicts of interest to declare.


Oncotarget ◽  
2016 ◽  
Vol 7 (52) ◽  
pp. 86469-86479 ◽  
Author(s):  
Angela Minervini ◽  
Crescenzio Francesco Minervini ◽  
Luisa Anelli ◽  
Antonella Zagaria ◽  
Paola Casieri ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document