scholarly journals The Encyclopedia of Proteome Dynamics: the KinoViewer

2018 ◽  
Vol 35 (8) ◽  
pp. 1441-1442 ◽  
Author(s):  
Alejandro Brenes ◽  
Angus I Lamond

Abstract Summary The Encyclopedia of Proteome Dynamics (EPD) ‘KinoViewer’ is an interactive data visualization tool designed for analysis and exploration of both protein and transcript data, showing expression of kinase genes in either human or mouse cells and tissues. The KinoViewer provides a comprehensive, updated graphical display of all human/mouse kinases and an open access analysis tool for the community with a user-friendly graphical interface. Availability and implementation The KinoViewer is based on a manually drawn SVG, which is utilized with D3.js to create a dynamic visualization. It can be accessed at: https://peptracker.com/epd/analytics/. The KinoViewer is currently only accessible through the EPD, it is open access and can be used either to view internal datasets, or used to upload and visualize external user datasets. Supplementary information Supplementary data are available at Bioinformatics online.

2019 ◽  
Author(s):  
Pablo Vicente-Munuera ◽  
Pedro Gómez-Gálvez ◽  
Robert J Tetley ◽  
Cristina Forja ◽  
Antonio Tagua ◽  
...  

Abstract Summary Here we present EpiGraph, an image analysis tool that quantifies epithelial organization. Our method combines computational geometry and graph theory to measure the degree of order of any packed tissue. EpiGraph goes beyond the traditional polygon distribution analysis, capturing other organizational traits that improve the characterization of epithelia. EpiGraph can objectively compare the rearrangements of epithelial cells during development and homeostasis to quantify how the global ensemble is affected. Importantly, it has been implemented in the open-access platform Fiji. This makes EpiGraph very user friendly, with no programming skills required. Availability and implementation EpiGraph is available at https://imagej.net/EpiGraph and the code is accessible (https://github.com/ComplexOrganizationOfLivingMatter/Epigraph) under GPLv3 license. Supplementary information Supplementary data are available at Bioinformatics online.


2018 ◽  
Vol 2 (20) ◽  
pp. 2637-2645
Author(s):  
Jason Xu ◽  
Yiwen Wang ◽  
Peter Guttorp ◽  
Janis L. Abkowitz

Abstract Stochastic simulation has played an important role in understanding hematopoiesis, but implementing and interpreting mathematical models requires a strong statistical background, often preventing their use by many clinical and translational researchers. Here, we introduce a user-friendly graphical interface with capabilities for visualizing hematopoiesis as a stochastic process, applicable to a variety of mammal systems and experimental designs. We describe the visualization tool and underlying mathematical model, and then use this to simulate serial transplantations in mice, human cord blood cell expansion, and clonal hematopoiesis of indeterminate potential. The outcomes of these virtual experiments challenge previous assumptions and provide examples of the flexible range of hypotheses easily testable via the visualization tool.


2018 ◽  
Author(s):  
Brandon Monier ◽  
Adam McDermaid ◽  
Jing Zhao ◽  
Anne Fennell ◽  
Qin Ma

AbstractMotivationNext-Generation Sequencing has made available much more large-scale genomic and transcriptomic data. Studies with RNA-sequencing (RNA-seq) data typically involve generation of gene expression profiles that can be further analyzed, many times involving differential gene expression (DGE). This process enables comparison across samples of two or more factor levels. A recurring issue with DGE analyses is the complicated nature of the comparisons to be made, in which a variety of factor combinations, pairwise comparisons, and main or blocked main effects need to be tested.ResultsHere we present a tool called IRIS-DGE, which is a server-based DGE analysis tool developed using Shiny. It provides a straightforward, user-friendly platform for performing comprehensive DGE analysis, and crucial analyses that help design hypotheses and to determine key genomic features. IRIS-DGE integrates the three most commonly used R-based DGE tools to determine differentially expressed genes (DEGs) and includes numerous methods for performing preliminary analysis on user-provided gene expression information. Additionally, this tool integrates a variety of visualizations, in a highly interactive manner, for improved interpretation of preliminary and DGE analyses.AvailabilityIRIS-DGE is freely available at http://bmbl.sdstate.edu/IRIS/[email protected] informationSupplementary data are available at Bioinformatics online.


2019 ◽  
Vol 35 (17) ◽  
pp. 3169-3170 ◽  
Author(s):  
Allan J R Ferrari ◽  
Milan A Clasen ◽  
Louise Kurt ◽  
Paulo C Carvalho ◽  
Fabio C Gozzo ◽  
...  

Abstract Summary A software was developed to evaluate structural models using chemical crosslinking experiments. The user provides the types of linkers used and their reactivity, and the observed crosslinks and dead-ends. The software computes the minimum length of a physically inspired linker that connects the reactive atoms of interest, and reports the consistency of each distance with the experimental observation. Statistics on model consistency with the links are provided. Tools to evaluate the correlation of crosslinks in ensembles of models were developed. TopoLink was used to evaluate the potential crosslinks of all structures of the CATH database. The number of crosslinks expected as a function of protein size and linker length can be used as guide for experimental design. Availability and implementation TopoLink is available as free software at http://m3g.iqm.unicamp.br/topolink, and distributed as source code with a user-friendly graphical interface for Windows. A web server is also provided. Supplementary information Supplementary data are available at Bioinformatics online.


2017 ◽  
Author(s):  
Pablo Vicente-Munuera ◽  
Pedro Gómez-Gálvez ◽  
Robert J. Tetley ◽  
Cristina Forja ◽  
Antonio Tagua ◽  
...  

SUMMARYDuring development, cells must coordinate their differentiation with their growth and organization to form complex multicellular structures such as tissues and organs. Healthy tissues must maintain these structures during homeostasis. Epithelia are packed ensembles of cells from which the different tissues of the organism will originate during embryogenesis. A large barrier to the analysis of the morphogenetic changes in epithelia is the lack of simple tools that enable the quantification of cell arrangements. Here we present EpiGraph, an image analysis tool that quantifies epithelial organization. Our method combines computational geometry and graph theory to measure the degree of order of any packed tissue. EpiGraph goes beyond the traditional polygon distribution analysis, capturing other organizational traits that improve the characterization of epithelia. EpiGraph can objectively compare the rearrangements of epithelial cells during development and homeostasis to quantify how the global ensemble is affected. Importantly, it has been implemented in the open-access platform FIJI. This makes EpiGraph very user friendly, with no programming skills required.


GigaScience ◽  
2021 ◽  
Vol 10 (2) ◽  
Author(s):  
Guilhem Sempéré ◽  
Adrien Pétel ◽  
Magsen Abbé ◽  
Pierre Lefeuvre ◽  
Philippe Roumagnac ◽  
...  

Abstract Background Efficiently managing large, heterogeneous data in a structured yet flexible way is a challenge to research laboratories working with genomic data. Specifically regarding both shotgun- and metabarcoding-based metagenomics, while online reference databases and user-friendly tools exist for running various types of analyses (e.g., Qiime, Mothur, Megan, IMG/VR, Anvi'o, Qiita, MetaVir), scientists lack comprehensive software for easily building scalable, searchable, online data repositories on which they can rely during their ongoing research. Results metaXplor is a scalable, distributable, fully web-interfaced application for managing, sharing, and exploring metagenomic data. Being based on a flexible NoSQL data model, it has few constraints regarding dataset contents and thus proves useful for handling outputs from both shotgun and metabarcoding techniques. By supporting incremental data feeding and providing means to combine filters on all imported fields, it allows for exhaustive content browsing, as well as rapid narrowing to find specific records. The application also features various interactive data visualization tools, ways to query contents by BLASTing external sequences, and an integrated pipeline to enrich assignments with phylogenetic placements. The project home page provides the URL of a live instance allowing users to test the system on public data. Conclusion metaXplor allows efficient management and exploration of metagenomic data. Its availability as a set of Docker containers, making it easy to deploy on academic servers, on the cloud, or even on personal computers, will facilitate its adoption.


Author(s):  
Ferhat Alkan ◽  
Joana Silva ◽  
Eric Pintó Barberà ◽  
William J Faller

Abstract Motivation Ribosome Profiling (Ribo-seq) has revolutionized the study of RNA translation by providing information on ribosome positions across all translated RNAs with nucleotide-resolution. Yet several technical limitations restrict the sequencing depth of such experiments, the most common of which is the overabundance of rRNA fragments. Various strategies can be employed to tackle this issue, including the use of commercial rRNA depletion kits. However, as they are designed for more standardized RNAseq experiments, they may perform suboptimally in Ribo-seq. In order to overcome this, it is possible to use custom biotinylated oligos complementary to the most abundant rRNA fragments, however currently no computational framework exists to aid the design of optimal oligos. Results Here, we first show that a major confounding issue is that the rRNA fragments generated via Ribo-seq vary significantly with differing experimental conditions, suggesting that a “one-size-fits-all” approach may be inefficient. Therefore we developed Ribo-ODDR, an oligo design pipeline integrated with a user-friendly interface that assists in oligo selection for efficient experiment-specific rRNA depletion. Ribo-ODDR uses preliminary data to identify the most abundant rRNA fragments, and calculates the rRNA depletion efficiency of potential oligos. We experimentally show that Ribo-ODDR designed oligos outperform commercially available kits and lead to a significant increase in rRNA depletion in Ribo-seq. Availability Ribo-ODDR is freely accessible at https://github.com/fallerlab/Ribo-ODDR Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Vol 36 (12) ◽  
pp. 3913-3915
Author(s):  
Hemi Luan ◽  
Xingen Jiang ◽  
Fenfen Ji ◽  
Zhangzhang Lan ◽  
Zongwei Cai ◽  
...  

Abstract Motivation Liquid chromatography–mass spectrometry-based non-targeted metabolomics is routinely performed to qualitatively and quantitatively analyze a tremendous amount of metabolite signals in complex biological samples. However, false-positive peaks in the datasets are commonly detected as metabolite signals by using many popular software, resulting in non-reliable measurement. Results To reduce false-positive calling, we developed an interactive web tool, termed CPVA, for visualization and accurate annotation of the detected peaks in non-targeted metabolomics data. We used a chromatogram-centric strategy to unfold the characteristics of chromatographic peaks through visualization of peak morphology metrics, with additional functions to annotate adducts, isotopes and contaminants. CPVA is a free, user-friendly tool to help users to identify peak background noises and contaminants, resulting in decrease of false-positive or redundant peak calling, thereby improving the data quality of non-targeted metabolomics studies. Availability and implementation The CPVA is freely available at http://cpva.eastus.cloudapp.azure.com. Source code and installation instructions are available on GitHub: https://github.com/13479776/cpva. Supplementary information Supplementary data are available at Bioinformatics online.


Author(s):  
Jiawei Wang ◽  
Yong-Yi Wang ◽  
William A. Bruce ◽  
Steve Rapp ◽  
Russell Scoles

Abstract Construction of a cross-country pipeline involves lifting the pipeline off the skids and lowering it into the trench (lifting and lowering-in). This can introduce the highest stress magnitude that the pipe may experience over its service life. If not managed properly, overly high stresses may cause integrity issues during construction and/or service. If the girth welds are qualified and accepted using alternative flaw acceptance criteria, such as those in API 1104 Annex A and CSA Z662 Annex K, these stresses must be kept below a preset level during lifting and lowering-in to satisfy the requirements of those standards. This paper covers the development and usage of a stress analysis tool for the continuous lifting and lowering-in of pipe strings without a concrete coating or river weights. The outcome of the stress analysis can be used to develop lifting and lowering-in plans for construction crews. The core functionality of the application tool is to calculate the stresses from bending in the vertical and horizontal planes. The stresses from vertical bending are derived from an extensive analysis of continuous lifting and lowering-in processes. The stresses from horizontal bending are calculated using closed-form analytical solutions. The tool provides a graphical interface that interprets the background stress analysis results and displays information necessary for the development of lifting and lowering-in plans. The tool can be used to evaluate what-if scenarios for various tentative lifting and lowering-in scenarios. The process of using the tool to develop lifting and lowering-in plans is demonstrated in this paper through an example problem. The number of sidebooms and other lifting and lowering-in parameters such as sideboom spacing and lifting height range are changed to make the lifting and lowering-in plan easy to use for the laying contractors. Such tradeoffs can be addressed proactively with construction contractors to ensure that a mutually acceptable approach to lifting and lowering-in is taken.


2018 ◽  
Vol 35 (15) ◽  
pp. 2686-2689
Author(s):  
Asa Thibodeau ◽  
Dong-Guk Shin

Abstract Summary Current approaches for pathway analyses focus on representing gene expression levels on graph representations of pathways and conducting pathway enrichment among differentially expressed genes. However, gene expression levels by themselves do not reflect the overall picture as non-coding factors play an important role to regulate gene expression. To incorporate these non-coding factors into pathway analyses and to systematically prioritize genes in a pathway we introduce a new software: Triangulation of Perturbation Origins and Identification of Non-Coding Targets. Triangulation of Perturbation Origins and Identification of Non-Coding Targets is a pathway analysis tool, implemented in Java that identifies the significance of a gene under a condition (e.g. a disease phenotype) by studying graph representations of pathways, analyzing upstream and downstream gene interactions and integrating non-coding regions that may be regulating gene expression levels. Availability and implementation The TriPOINT open source software is freely available at https://github.uconn.edu/ajt06004/TriPOINT under the GPL v3.0 license. Supplementary information Supplementary data are available at Bioinformatics online.


Sign in / Sign up

Export Citation Format

Share Document